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0 「コンピュータ数学」の講義について

この講義はコンピュータを用いて，数学をより深く理解することを目的とする．取り扱

う内容は

　 I　関数のグラフ (いろいろな曲線)

y = f(x)の形，媒介変数表示された曲線，曲座標表示された曲線

陰関数表示 (f(x, y) = 0)された曲線は難しいのでそのままでは扱わない

名前のついた曲線

　 II　数値計算 (近似値の計算)

Taylorの定理 (Maclaurinの定理)の応用

Newton法 (方程式の解の近似)

積分の近似値 (台形公式，Simpsonの公式)

　 III　乱数を用いるシミュレーション

単純なモンテカルロ法 (乱数を発生させて積分の近似値を求める)

乱歩 (=酔歩=ランダムウォーク)

　 IV　差分方程式の解の挙動 (昨年の『数学特論』と重なる)

　V　微分方程式の解の挙動 (2年前・3年前の『管理科学数学』と重なる)

　VI　その他 (フラクタル図形，ライフゲームなど)

に関することを考えている．(予定変更あり)

教材はプリントをインターネットにて配布する．PDFファイルなので，Acrobat Reader

が必要 (たいていのパソコンにはインストールされている)

ホームページのアドレスは

http://www.ne.jp/asahi/kitty/shiro/

mail address：ibuki@kobe.email.ne.jp

ibuki@econ.u-hyogo.ac.jp

k.ibuki@ezweb.ne.jp

使用するプログラミング言語は『(仮称)十進BASIC』(文教大学　白石和夫氏作)を用

いる．これを用いる理由は

・他のプログラミング言語に比べて，気楽に使える．

・無料で使用できる (次のホームページから downloadできる)．

　　 http://hp.vector.co.jp/authors/VA008683/

・グラフィックが簡単に使える．

講義の方法については受講者の数やアンケートを見て進めていく．
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1 十進BASICの使い方について

1.1 インストール

1)　次のホームページより downloadする (検索ページにて「十進BASIC」で検索してこ

のページにいってもよい)

http://hp.vector.co.jp/authors/VA008683/

2)　デスクトップまたはUSBメモリに『十進BASIC』という名前のフォルダを作り，そ

こへ downloadした『BASIC51G.EXE』を移動またはコピーする．

3)　『BASIC51G.EXE』は自己解凍ファイルになっているので，これをダブルクリック

し，保存先を聞かれたら，『参照ボタン』を押すと，『十進BASIC』フォルダが指定される

ので『OK』ボタンをクリックし，解凍する．

(もう，圧縮ファイルの『BASIC51G.EXE』は不要)

4)　『十進BASIC』の起動は解凍された『BASIC.EXE』をダブルクリック

1.2 十進BASICの基本の基本

1)　プログラムは通常，上から順に実行される．

プログラム実行の最後には「END」が必要

2)　文字列定数以外は英字の大文字小文字は区別されない (どちらを用いてもよい)

3)　変数名は英字に，英字，数字，または＿を続けたものを用いる．

また，文字列変数 (文字列を代入するための変数)には末尾に「$」をつける．

4)　代入文　　 LETÃ変数名=定数または式　 (LETは必ず必要)

INPUTÃ変数名

INPUTÃPROMPTÃ"メッセージ":変数名

5)　数値演算　　足し算　+ 引き算　- 掛け算　* 割り算　/

巾乗　^　　 25　は　 2^5

演算のカッコは何重になっていても丸ガッコ ()のみを用いる

6)　出力文　　 PRINTÃ定数または式

PRINTÃ定数または式,

(コンマで終われば改行せずに間隔をあけて表示)

PRINTÃ定数または式;

(セミコロンで終われば改行せずに間隔をあけずに表示)

コンマやセミコロンで区切って，複数個表示することもできる．

7)　困ったときにはヘルプ機能で調べる
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プログラム例 01
LETÃa=2

LETÃb=5

PRINTÃa+b,a-b,a*b,a/b

END

プログラム例 02
INPUTÃPROMPTÃ"x=":x

INPUTÃPROMPTÃ"y=":y

PRINTÃ"x+y=";x+y,"x-y=";x-y,"x^y=";x^y

END

1.3 ループ (繰り返し)

1) FOR ～　NEXT文

FORÃ変数=数値 1ÃTOÃ数値 2[ÃÃSTEPÃ数値 3]

ÃÃÃ命令 1

ÃÃÃ命令 2

ÃÃÃ・・・

NEXTÃ変数

変数が数値 1から数値 2を越えるまで数値 3の間隔で増加しながら，各命令の実行を繰り

返す．(途中でループから抜け出すときは EXITÃFOR)

『入れ子』になってもよい．

プログラム例 03
FORÃx=1ÃTOÃ10

ÃÃÃprintÃx

NEXTÃx

END

プログラム例 04(1から 10まで足すプログラム)
LETÃS=0

FORÃx=1ÃTOÃ10

ÃÃÃLETÃS=S+x

NEXTÃx

PRINTÃS

END
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2) DO WHILE ～　 LOOP文 (前判定反復)

DOÃWHILEÃ条件　

ÃÃÃ命令 1

ÃÃÃ命令 2

ÃÃÃ・・・

LOOP

条件が満たされている間は各命令を繰り返す．(途中でループから抜け出すときはEXITÃDO)

ループに入る前に条件をチェックするので，条件が真でなければ 1回も実行されない．

プログラム例 05(1から 10まで足すプログラム)
LETÃS=0

LETÃX=1

DOÃWHILEÃX<=10

ÃÃÃLETÃS=S+X

ÃÃÃLETÃX=X+1

LOOP

PRINTÃS

END

3) DO ～　 LOOP WHILE文 (後判定反復)

DOÃ　

ÃÃÃ命令 1

ÃÃÃ・・・

LOOPÃWHILEÃ条件

条件が満たされている間は各命令を繰り返す．(途中でループから抜け出すときはEXITÃDO)

ループに入った後で条件をチェックするので，条件が真でなくても 1回は実行される．

4) DO ～　 LOOP UNTIL文 (後判定反復)

DOÃ　

ÃÃÃ命令 1

ÃÃÃ・・・

LOOPÃUNTILÃ条件

条件が真になるまで (偽の間は)各命令を繰り返す．
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1.4 条件分岐

1) 単純 IF文 (1行で記述)

IFÃ条件ÃTHENÃ命令

条件が真であれば命令を実行する．条件が偽であれば命令は実行されず次の行へ行く．

IFÃ条件ÃTHENÃ命令 1ÃELSEÃ命令 2

条件が真であれば命令 1を実行し，条件が偽であれば命令 2を実行する．

2) IF ～　THEN ～ END IF文 (複数行で記述)

IFÃ条件ÃTHEN

ÃÃÃ命令 1

ÃÃÃ命令 2

ÃÃÃ・・・

ENDÃIF

条件が真であれば各命令を実行する．条件が偽であれば命令は実行されず ENDÃIFの次

の行へ行く

3) IF ～　THEN ～ ELSE ～ END IF文 (複数行で記述)

IFÃ条件ÃTHEN

ÃÃÃ命令 1

ELSE

ÃÃÃ命令 3

EENDÃIF

条件が真であれば命令 1を実行する．条件が偽であれば命令 3を実行する．

4) ELSEIF

IFÃ条件 1ÃTHEN

ÃÃÃ命令 1

ELSEIFÃ条件 2ÃTHEN

ÃÃÃ命令 2

ELSE

ÃÃÃ命令 3

ENDÃIF

条件 1が真であれば命令 1を実行する．条件 1が偽で条件 2が真であれば命令 2を実行

する．条件 1も条件 2も偽であれば命令 3を実行する．
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プログラム例 06(平方根)

INPUTÃPROMPTÃ"x=":x

IFÃx>=0Ãthen

ÃÃÃPRINTÃSQR(x)

ELSE

ÃÃÃPRINTÃ"±";SQR(-x);"i"

ENDÃIF

END

プログラム例 07(1次方程式 ax = bの解)

INPUTÃPROMPTÃ"a=":a

INPUTÃPROMPTÃ"b=":b

IFÃa<>0Ãthen

ÃÃÃLETÃx=b/a

ÃÃÃPRINTÃ"x=";x

ELSEIFÃb=0ÃTHEN

ÃÃÃPRINTÃ"不定 (無数の解)"

ELSE

ÃÃÃPRINTÃ"解なし"

ENDÃIF

END

条件について

1)　 6=は『<>』または『><』

2)　≧は『>=』または『=>』

3)　≦は『<=』または『=<』

4)　複数の条件は『AND』,『OR』で結ぶ．

5)　否定の条件は『NOT』．

組込み関数について

1)　 ABS(x)　 xの絶対値　 |x|
2)　 SQR(x)　 xの非負の平方根　

√
x

3)　 INT(x)　 xを超えない最大の整数 　 [x](Gaussの記号)

4)　 sin x→ SIN(x) cos x→ COS(x) tan x→ TAN(x)

sin−1 x→ ASIN(x) cos−1 x→ ACOS(x) tan−1 x→ ATN(x)

5)　 ex→ EXP(x) loge x→ LOG(x) log10 x→ LOG10(x)
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1.5 グラフィックについて

1)　座標系の設定

SETÃWINDOWÃÃ左端座標Ã,Ã右端座標Ã,Ã下端座標Ã,Ã上端座標

2)　点を描く

PLOTÃPOINTS:Ãx座標Ã,Ãy座標

予め，打つ点のスタイルを次の命令で定めておく．

SETÃPOINTÃSTYLEÃ数値式

マークの形（ point style）を設定する．

1 · 2 + 3 ＊ 4 ○ 5 ×

3)　線を描く

PLOTÃLINES:Ãx1Ã,y1Ã;Ãx2Ã,y2

(x1, y1)から (x1, y2)までを線分で結ぶ．

線の色やスタイルを指定したい場合は次の命令で行う．

SETÃLINEÃCOLORÃ数値式

色は 0から 255までが利用でき，あらかじめ次のように割り当てられている．

0白， 1黒， 2青， 3緑， 4赤， 5水色， 6黄色， 7赤紫，8 灰色，9 濃い青,

10 濃い緑，11 青緑， 12 えび茶，13 オリーブ色，14 濃い紫，15 銀色，· · ·
SETÃLINEÃSTYLEÃ数値式

線の種類は，1 実線, 2 破線, 3 点線, 4 一点鎖線

4)　円を描く

DRAWÃcircle (現在の line colorで原点を中心とする半径 1の円を描く)

点 (x, y)を中心とする半径 rの円を描きたいときは，

DRAWÃcircleÃWITHÃSCALE(r)*SHIFT(x,y)

5)　座標軸や格子を描く

DRAWÃAXES (x軸と y軸を描く)

DRAWÃGRID (x軸方向 間隔１，y軸方向 間隔１の格子を描く)

7)　画面消去

CLEAR

8)　色を塗る

FLOODÃx,y

(点 (x, y)を始点として点 (x, y)と同色でつながる領域を現在のarea colorで塗りつぶす．)

塗りつぶす色の色の設定は

SETÃAREAÃCOLORÃ数値式
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2 いろいろな曲線

2.1 y = f(x)の形のグラフ

2.1.1 平行移動と伸縮

y = f(x)のグラフを

　 x軸方向に p, y軸方向に qだけ平行移動すると　 y = f(x− p) + q

　 x軸方向に a倍, y軸方向に b倍すると　 y = bf(x
a
)

2.1.2 関数 y = f(x)のグラフを描くプログラム

プログラム例 08(y = x2 (−3 <= x <= 3)の graph)

SETÃWINDOWÃ-3,3,-1,5

DRAWÃAXES

DEFÃf(x)=x^2

FORÃx=-5ÃTOÃ5ÃSTEPÃ0.1

ÃÃÃPLOTÃLINES:x,f(x);

NEXTÃx

END

十進BASICの追加説明 1

☆関数の定義 1

DEFÃ関数名 (変数)=変数の数式

☆ PLOTÃLINES文の補足

PLOTÃLINES:x1,y1;

(終りがセミコロンで終わるときは紙の上にペンを置いたままの状態)

次の PLOTÃLINESの点までを線分で結ぶ

PLOTÃLINES:x1,y1

(終りがセミコロンで終わらないときは紙の上からペンを離した状態)

PLOTÃLINES

(コロン以下がないときは，単にペンを紙から離す)
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プログラム例 09(y = 1
x

(−3 <= x <= 3)の graph)

SETÃWINDOWÃ-3,3,-3,3

DRAWÃAXES

DEFÃf(x)=1/x

FORÃx=-5ÃTOÃ5ÃSTEPÃ0.1

ÃÃÃPLOTÃLINES:x,f(x);

NEXTÃx

END

プログラム例 09は x = 0のとき，0が分母にくるためエラーが起こる．このようなエ

ラーが起こるときは次のようなエラー処理を行うことによってエラーを回避できる．

プログラム例 09-2(y = 1
x

(−3 <= x <= 3)の graph)

SETÃWINDOWÃ-3,3,-3,3

DRAWÃAXES

DEFÃf(x)=1/x

FORÃx=-5ÃTOÃ5ÃSTEPÃ0.1

ÃÃÃWHENÃEXCEPTIONÃIN

ÃÃÃÃÃÃPLOTÃLINES:x,f(x);

ÃÃÃUSE

ÃÃÃÃÃÃPLOTÃLINES

ÃÃÃENDÃWHEN

NEXTÃx

END

十進BASICの追加説明 2

☆エラー処理

　　　 WHENÃEXCEPTIONÃIN

　　　ÃÃÃ命令 1

　　　 USE

　　　ÃÃÃ命令 2

　　　 ENDÃWHEN

命令 1の中でエラーが生じれば命令 1を行わず，命令 2を行う．
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問題1　次の関数のグラフがどのようになるか数学的に考えよ．また，そのグラフを描くプ

ログラムを作成し，実行せよ．(xの範囲には定義されない部分も含まれている．SETÃWINDOW

文によって適当な座標系を定め，なるべく縦と横の縮尺を同じにせよ)

(1)　 y = f(x) = x3 − x (−2 <= x <= 2)

(2)　 y = f(x) = x4 − 2x2 (−2 <= x <= 2)

(3)　 y = f(x) =
x

x2 − 1
(−2 <= x <= 2)

(4)　 y = f(x) = x +
1

x
(−7 <= x <= 7)

(5)　 y = f(x) = x− 1

x
(−7 <= x <= 7)

(6)　 y = f(x) =
√

x (0 <= x <= 3)

(7)　 y = f(x) =
√

x2 + 1 (−5 <= x <= 5)

(8)　 y = f(x) =
√

x2 − 1 (−3 <= x <= 3)

(9)　 y = f(x) = sin x (−7 <= x <= 7)

(10)　 y = f(x) = cos x (−7 <= x <= 7)

(11)　 y = f(x) = x cos 1
x

(−0.1 <= x <= 0.1)

(12)　 y = f(x) =
1

sin x
(−7 <= x <= 7)

(13)　 y = f(x) = f(x) = sin 11x + sin 12x (−10 <= x <= 10)

(14)　 y = f(x) = tan−1 x (−4 <= x <= 4)

(15)　 y = f(x) = tan x (−7 <= x <= 7)

(16)　 y = f(x) = 2x (−5 <= x <= 5)

(17)　 y = f(x) = 2−x (−5 <= x <= 5)

(18)　 y = f(x) = log2 x (0 <= x <= 7)

(19)　 y = f(x) = cosh x =
ex + e−x

2
(−2 <= x <= 2)

(20)　 y = f(x) = sinh x =
ex − e−x

2
(−5 <= x <= 5)
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2.2 曲線の媒介変数表示
{

x = f(t)

y = g(t)
t : α −→ β

tがαから βまで変化するとき，(f(t), g(t))を座標とする点Pは xy平面上を動き，その

軌跡は曲線となる．上のような表示をこの曲線の媒介変数表示あるいは para-meter表示

といい，このときの変数 tを媒介変数 (para-meter)という．また，点 (f(α), g(α))を始点，

点 (f(β), g(β))を終点という．

例 1(cycloid)

半径 aの円板をある直線に沿って，滑らさずに回転させるとき，円板の円周上の固定点

Pの動く軌跡をサイクロイド (cycloid)という．サイクロイドは次のように媒介変数表示

される． {
x = aθ − a sin θ

y = a− a cos θ
θ : 0 −→ β

例 2(epicycloid)

半径 bの円板をある固定した半径 aの円の円周に沿って外側を，滑らさずに回転させる

とき，円板の円周上の固定点Pの動く軌跡を外サイクロイド (epicycloid)という．これは

次のように媒介変数表示される．




x = (a + b) cos θ − b cos
a + b

b
θ

y = (a + b) sin θ − b sin
a + b

b
θ

θ : 0 −→ β

例 3(hypocycloid)

半径 bの円板をある固定した半径 aの円の円周に沿って内側を，滑らさずに回転させる

とき，円板の円周上の固定点Pの動く軌跡を内サイクロイド (hypocycloid)という．これ

は次のように媒介変数表示される．(ただし，b < a)




x = (a− b) cos θ + b cos
a− b

b
θ

y = (a− b) sin θ − b sin
a− b

b
θ

θ : 0 −→ β

例 4(リサジュー (Lissajous)曲線)
{

x = a1 cos(ω1t + α1)

y = a2 cos(ω2t + α2)
t : 0 −→ β

あるいは
{

x = A cos(at)

y = B sin(bt + δ)
t : 0 −→ β
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例 5(楕円と双曲線)

楕円：
x2

a2
+

y2

b2
= 1 は

{
x = a cos θ

y = b sin θ
θ : 0 −→ 2π

双曲線：
x2

a2
− y2

b2
= 1 は





x =
a

cos θ

y = b tan θ
θ : 0 −→ 2π

あるいは




x = a cosh t = a
et + e−t

2

y = b sinh t = b
et − e−t

2

t : −∞ −→∞

問題 2　サイクロイド，エピサイクロイド，ハイポサイクロイドはいずれも，円周上の点

の軌跡であったが，円周上にない場合 (円の内部の点や外部の点の軌跡の場合)にはこれ

らをそれぞれ，トロコイド (trochoid)，エピトロコイド (epitrochoid)，ハイポトロコイド

(hypotrochoid)という．これらの曲線を媒介変数表示し，それらを描くプログラムを作成

して，コンピュータに描かせよ．

問題 3　円：x = a cos θ , y = a sin θ　に糸を巻き付け，それを引っ張りながら解いて

いくとき，糸の端の点の描く曲線を媒介変数表示し，それを描くプログラムを作成して，

コンピュータに描かせよ．ただし，糸の端は，最初は点 (a, 0)にあるとせよ．

2.3 極座標と曲線

平面上の点P の位置を表すのに，今までは xy-座標を用いてきた．この他に次のような

表し方もある．平面上の定点O とOから引いた半直線OX を定めておく．

OP = r , ∠XOP = θ

とするとき，点Pの位置を (r, θ)とする．このような座標を極座標という．θは時計と反

対周りに一般角を考え，rが負の値の場合には，

OP′ = |r| , ∠XOP′ = θ

とするとき，点 Pは P′と原点Oに関して対称な位置を表すことにする．



2. いろいろな曲線 12

rと θの関係式 f(r, θ) = 0 は極座標において曲線を表す．この関係式を極方程式と

いう．

また，OXを x軸とし，Oを通り，それに直交する直線を y軸とするとき，2つの座標

の間には次の関係がある．

{
x = r cos θ

y = r sin θ





r =
√

x2 + y2

θ =





tan−1 y
x

(x > 0のとき)

tan−1 y
x

+ π (x < 0のとき)
π
2

(x = 0 , y > 0のとき)

−π
2

(x = 0 , y < 0のとき)

例 6(直線)

原点を通る直線： θ = α (α :定数)

極座標が (r0, α)で表される点Aを通りOAに直交する直線： r cos(θ − α) = r0

例 7(円)

原点を中心とし，半径 r0の円： r = r0 (r0 :定数)

極座標が (r1, α)を中心とし，半径 r0の円： r2 + r2
1 − 2rr1 cos(θ − α)− r2

0 = 0

例 8(アルキメデスの螺線 (らせん))

r = aθ (a > 0)

例 9(等角螺線，対数螺線)

r = aθ (a > 1)

例 10(正葉線)

r = a sin nθ (a > 0 , nは自然数)

例 11(Pascalのリマソン (limaçon=かたつむり))

r = a cos θ + b (a > 0 , b > 0)

a = bのときはカージオイド (cardioid)という．

問題 4　例 8(アルキメデスの螺線)と例 9(対数螺線)のグラフを手で描いてみなさい．

問題 5　例 10(正葉線)のグラフを n = 1, 2, 3, 4, 5の場合に手で描いてみなさい．

問題 6　例 11(Pascalのリマソン)のグラフを a > b , a = b , b = 2aの各場合に手で描い

てみなさい．
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r = f(θ)のように書くことのできる極方程式の定める曲線は，次のように媒介変数表

示もできる．
{

x = f(θ) cos θ

y = f(θ) sin θ

問題 7　問題 4～問題 6の各問題の曲線をコンピュータに描かせるプログラムを作成し，

コンピュータに描かせなさい．

2.4 2次曲線

2.4.1 2次曲線の分類

ax2 + 2hxy + by2 + 2fx + 2gy + c = 0(2 - 1)

の関係式で表される曲線を 2次曲線といい，それらは次のいずれかに分類される．(ただ

し，|a|+ |b|+ |c| 6= 0とする)

(i)　楕円

(ii)　双曲線

(ii)　放物線

(iv)　交わる 2直線

(v)　平行な 2直線

(vi)　一つの直線

(vii)　一つの点

(viii)　満たす点なし

平行移動：X = x + p , Y = y + q をすることによって，h2 6= ab のときは，

aX2 + 2hXY + bY 2 + c1 = 0

のように変形できる．これを，

ax2 + 2hxy + by2 + c = 0

と書こう．さらに座標軸の回転：x = X cos θ− Y sin θ , y = X sin θ + Y cos θ をすること

によって，

λ1X
2 + λ2Y

2 + c = 0

のように変形できる．これを，

λ1x
2 + λ2y

2 + c = 0
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と書こう．

問題8　h2 6= abのとき，ax2+2hxy+by2+2fx+2gy+c = 0をaX2+2hXY +bY 2+c1 = 0

に変形されるように p, q を定めなさい．

問題 9　 ax2 + 2hxy + by2 + c = 0を λ1X
2 + λ2Y

2 + c = 0に変形されるように 座標軸の

回転角 θ をどのように定めたらよいか？　また，このとき，λ1 , λ2 は行列
[

a h

h b

]
の

固有値に等しいことを示しなさい．

h2 6= ab のときには，λ1λ2 6= 0となる．必要なら両辺に，−1をかけることによって，

λ1 > 0としよう．

(1)　 λ1 > 0 , λ2 > 0 , c < 0のときは，楕円：
x2

a2
+

y2

b2
= 1に帰着される．

(2)　 λ1 > 0 , λ2 > 0 , c = 0のときは，満たす点は原点 1点のみ

(3)　 λ1 > 0 , λ2 > 0 , c > 0のときは，満たす点なし

(4)　 λ1 > 0 , λ2 < 0 , c 6= 0のときは，双曲線：
x2

a2
− y2

b2
= ±1に帰着される．

(5)　 λ1 > 0 , λ2 < 0 , c = 0のときは，交わる 2直線：
x

a
± y

b
= 0に帰着される．

つぎに h2 = abの場合を考えよう．a > 0としてよい．(a < 0のときは，(2-1)の両辺に

−1をかけて考える，a = 0のときは，b 6= 0なので，xと yの役割を入れ替えて考えよう)

座標軸の回転：x = X cos θ − Y sin θ , y = X sin θ + Y cos θ をすることによって，

(a + b)Y 2 + 2FX + 2GY + c = 0

のように変形できる (F <= 0 , a + b > 0)．これを，

(a + b)y2 + 2Fx + 2Gy + c = 0

と書こう．さらに，y方向の平行移動：y = Y − qをすれば，

(a + b)Y 2 + 2Fx + c1 = 0

のように変形できる．これをまた，

(a + b)y2 + 2Fx + c = 0

と書こう．

(6)　 F < 0のときは，x方向の平行移動：x = X − c

2F
をすれば，

(a + b)Y 2 + 2FX = 0　 (放物線：y2 = 4pxの形)

(7)　 F = 0 , c < 0のときは，Y = ±
√
− c

a + b
　 (平行な 2直線)
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(8)　 F = 0 , c = 0のときは，Y = 0　 (1直線)

(9)　 F = 0 , c > 0のときは，満たす点なし

問題 10　 h2 = ab のときに，上記のように変形できることを確かめよ．

2.4.2 放物線

定点 F(p, 0)と直線：x = −pからの距離が等しい点 P(x, y)の軌跡は

放物線：y2 = 4px

である．定点 F(p, 0)をこの放物線の焦点，直線：x = −pを準線という．

放物線の極座標表示

座標軸を x軸方向に平行移動し，焦点 Fが新しい原点になるようにする．放物線の方

程式は：

y2 = 4p(x + p)

ここに，x = r cos θ , y = r sin θ を代入して，rについて解くと，

r =
2p

1− cos θ
あるいは r =

−2p

1 + cos θ

これは 2つとも同じ放物線を表すので，ここでは，

r =
2p

1− cos θ

を採用しよう．

問題 11　定点 F(p, 0)と直線：x = −pからの距離が等しい点 P(x, y)の軌跡が y2 = 4px

であることを確かめよ．

問題 12　方程式 y2 = 4p(x + p) に x = r cos θ , y = r sin θ を代入して，rについて解

くと，

r =
2p

1− cos θ
あるいは r =

−2p

1 + cos θ

となることを確かめよ．

2.4.3 楕円

(I)　 2つの定点 F(c, 0)と F′(−c, 0)からの距離の和が一定 2a (a > c > 0)であるような

点 P(x, y)の軌跡を考える．
√

(x− c)2 + y2 +
√

(x + c)2 + y2 = 2a
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√
(x− c)2 + y2 = 2a−

√
(x + c)2 + y2

これを平方して，4で割り，整理すると，

a
√

(x + c)2 + y2 = a2 + cx

さらに平方して，整理すると，

(a2 − c2)x2 + a2y2 = a2(a2 − c2)

ここで，

(a2 − c2) = b2 (b > 0)

とおき，a2b2で割ると，
x2

a2
+

y2

b2
= 1 (a > b > 0)

が得られる．この曲線を楕円といい，2つの定点FとF′をこの楕円の焦点という．焦点

の座標は次のようになる．

F(
√

a2 − b2, 0) , F′(−√a2 − b2, 0)

(II)　定点F(c, 0)と直線：x = pからの距離の比が一定の値 eである点の軌跡を考えよう．
√

(x− c)2 + y2

|x− p| = e

分母を払って平方し，整理すると，

(1− e2)x2 − 2(c− e2p)x + y2 = e2p2 − c2

ここで，xの 1次の項がなくなるように，

c− e2p = 0 すなわち， p =
c

e2

とする．

(1− e2)x2 + y2 =
c2(1− e2)

e2

e < 1のとき，両辺を右辺で割ると，
x2

(
c

e

)2 +
y2

(
c
√

1− e2

e

)2 = 1

ここで，

a =
c

e
, b =

c
√

1− e2

e

(
c =

√
a2 − b2 , e =

√
a2 − b2

a
, p =

a2

√
a2 − b2

)
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とおくと，
x2

a2
+

y2

b2
= 1 (a > b > 0)

比 e =

√
a2 − b2

a
を離心率，直線：x = p =

a2

√
a2 − b2

を焦点 F(
√

a2 − b2, 0)に対応する

準線という．

焦点F′(−√a2 − b2, 0)，準線 x = −p = − a2

√
a2 − b2

，離心率 e =

√
a2 − b2

a
として，同様

に考えても，同じ楕円：
x2

a2
+

y2

b2
= 1が得られる．

楕円の極座標表示

座標軸を x軸方向に平行移動し，焦点 F′(−c, 0)が新しい原点になるようにする．この

とき，準線は x = −p が採用される．

x + c = r cos θ , y = r sin θ

これを
√

(x + c)2 + y2

|x + p| = e

に代入し，分母を払い，x + p > 0を考慮すると，

r = e(r cos θ − c + p) すなわち，　 r =
e(p− c)

1− e cos θ
=

b2

a
1− e cos θ

2.4.4 双曲線

(I)　 2つの定点 F(c, 0)と F′(−c, 0)からの距離の差が一定 2a (c > a > 0)であるような

点 P(x, y)の軌跡を考える．

|
√

(x− c)2 + y2 −
√

(x + c)2 + y2| = 2a
√

(x− c)2 + y2 = ±2a +
√

(x + c)2 + y2

これを平方して，4で割り，整理すると，

∓a
√

(x + c)2 + y2 = a2 + cx

さらに平方して，整理すると，

(c2 − a2)x2 − a2y2 = a2(c2 − a2)

ここで，

(c2 − a2) = b2 (b > 0)
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とおき，a2b2で割ると，
x2

a2
− y2

b2
= 1 (a > b > 0)

が得られる．この曲線を双曲線といい，2つの定点FとF′をこの楕円の焦点という．焦

点の座標は次のようになる．

F(
√

a2 + b2, 0) , F′(−√a2 + b2, 0)

(II)　楕円の場合と同様に定点 F(c, 0)と直線：x = pからの距離の比が一定の値 e > 1で

ある点の軌跡を考えよう．
√

(x− c)2 + y2

|x− p| = e

分母を払って平方し，整理すると，

(1− e2)x2 − 2(c− e2p)x + y2 = e2p2 − c2

ここで，xの 1次の項がなくなるように，

c− e2p = 0 すなわち， p =
c

e2

とする．

(e2 − 1)x2 − y2 =
c2(e2 − 1)

e2

両辺を右辺で割ると，
x2

(
c

e

)2 −
y2

(
c
√

e2 − 1

e

)2 = 1

ここで，

a =
c

e
, b =

c
√

e2 − 1

e

(
c =

√
a2 + b2 , e =

√
a2 + b2

a
, p =

a2

√
a2 + b2

)

とおくと，
x2

a2
− y2

b2
= 1 (a > b > 0)

比 e =

√
a2 + b2

a
を離心率，直線：x = p =

a2

√
a2 + b2

を焦点 F(
√

a2 + b2, 0)に対応する

準線という．

焦点F′(−√a2 + b2, 0)，準線 x = −p = − a2

√
a2 + b2

，離心率 e =

√
a2 + b2

a
として，同様

に考えても，同じ双曲線：
x2

a2
− y2

b2
= 1が得られる．
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双曲線の極座標表示

座標軸を x軸方向に平行移動し，焦点 F′(−c, 0)が新しい原点になるようにする．この

とき，準線は x = −p が採用される．

x + c = r cos θ , y = r sin θ

これを
√

(x + c)2 + y2

|x + p| = e

に代入し，分母を払い，x + p > 0を考慮すると，

r = e(r cos θ − c + p) すなわち，　 r =
e(p− c)

1− e cos θ
=

−b2

a
1− e cos θ

2.4.5 放物線・楕円・双曲線のまとめ

放物線：y2 = 4px

・定点 (焦点)F(p, 0)と直線 (準線)：x = −pからの距離が等しい軌跡

・焦点を原点に取ったときの極方程式：

r =
l

1− e cos θ
(l = 2p , e = 1)

楕円：
x2

a2
+

y2

b2
= 1 (a > b > 0)

・2つの定点 (焦点)F(±√a2 − b2, 0)からの距離の和が一定 2aであるような点の軌跡

・定点 (焦点)(±√a2 − b2, 0)と直線 (準線)：x = ± a2

√
a2 − b2

からの距離の比が一定 e < 1

である点の軌跡

・焦点 F′(−√a2 − b2, 0)を原点に取ったときの極方程式：

r =
l

1− e cos θ
(l =

b2

a
, e =

√
a2 − b2

a
)

双曲線：
x2

a2
− y2

b2
= 1 (a > 0, b > 0)

・2つの定点 (焦点)F(±√a2 − b2, 0)からの距離の差が一定 2aであるような点の軌跡

・定点 (焦点)(±√a2 + b2, 0)と直線 (準線)：x = ± a2

√
a2 + b2

からの距離の比が一定 e < 1

である点の軌跡

・焦点 F′(−√a2 + b2, 0)を原点に取ったときの極方程式：

r =
l

1− e cos θ
(l = −b2

a
, e =

√
a2 + b2

a
)
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問題 13　極方程式：r =
l

1− e cos θ
において，e = 1のときは放物線，0 < e < 1のとき

は楕円，e > 1のときは双曲線を描くことをコンピュータで確かめよ．

2.4.6 陰関数のグラフ

プログラムを用いて，f(x, y) = 0の形で，グラフを描かせることは難しい．ここでは，

媒介変数表示に帰着できる曲線や，ある場合には後に述べる，微分方程式の解をプログラ

ムを用いて描かせることに帰着できることを述べる．

例 13

x3 + y3 − 3axy = 0)

これを，コンピュータで描かせるために，媒介変数表示させたい．y = txとおいて，x, y

を tで表すと，




x =
3at

1 + t3

y =
3at2

1 + t3

例 14(レムニスケート (lemniscate))

(x2 + y2)2 = a2(x2 − y2)

これは，極座標で表せるので，媒介変数表示できる．x = r cos θ , y = r sin θを代入し

て，r2で割ると，

r2 = a2 cos 2θ

微分方程式への帰着

f(x.y) = 0

が媒介変数表示 x = x(t) , y = y(t)と媒介変数表示されているとしよう．すると，

f(x(t).y(t)) = 0

これを，tで微分すると，

fx(x(t).y(t))
dx

dt
+ fy(x(t).y(t))

dy

dt
= 0
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



dx

dt
= fy(x, y) x(0) = x0

dy

dt
= −fx(x, y) y(0) = y0

の解は，この曲線を表す．ただし，(x0, y0)はこの曲線上の 1点とする．このような微分

方程式の近似解の計算の仕方は後に述べるが，この曲線が特異点を持つ場合にはうまくい

かない．曲線の特異点とは，曲線上の点 (a, b)で，fx(a, b) = fy(a, b) = 0となる点のこと

で，上の例 13や 14においては原点が特異点になっている．
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3 数値計算

誤差についての注意

丸め誤差　無限小数や有効桁数が多い数について, コンピュータは通常では多い桁

を扱わないため，四捨五入・切り上げ・切捨てなどの数値を丸める操作

(四捨五入・切り上げ・切捨てなど)を行う．このために生じる誤差

打ち切り誤差　数学では無限に加えるとか無限回の操作をすれば等しいというよう

に考えることがあるが，コンピュータは有限回の操作しか行えない．そのため

に生じる誤差

誤差の累積　数学的には多くの操作をすれば，より正しい値に近くなることが多い

が，コンピュータで計算する場合には，打切り誤差など小さな誤差が累積して

逆に多くの操作の方が誤差が大きくなる場合がある．

3.1 Taylorの定理 (Maclaurinの定理)の応用

Taylorの定理

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·

+
f (n−1)(a)

(n− 1)!
(x− a)n−1 +

f (n)(c)

n!
(x− a)n

(cは aと xの間の数)

Maclaurinの定理

f(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 + · · ·+ f (n−1)(0)

(n− 1)!
xn−1 +

f (n)(θx)

n!
xn

(0 < θ < 1)

Taylor展開(無限級数)

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(c)

n!
(x− a)n + · · ·

Maclaurin展開(無限級数)

f(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 + · · ·+ f (n)(θx)

n!
xn + · · ·

Taylor展開やMaclaurin展開するためにはxの範囲に制限がある．Maclaurin展開をx方

向に平行移動すれば，Taylor展開と同じになるので，ここではMaclaurinの定理 (Maclaurin

展開)のみを扱おう．
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例 1(Maclaurin展開の例)

(1)　 (1 + x)α = 1 + αx +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

+
α(α− 1)(α− 2) · · · (α− n + 1)

n!
xn + · · ·

(−1 < x < 1)

　
(

α

0

)
= 1，自然数 kに対して，

(
α

k

)
=

α(α− 1)(α− 2) · · · (α− k + 1)

k!
とおくと，

(1 + x)α =

(
α

0

)
+

(
α

1

)
x +

(
α

2

)
x2 +

(
α

3

)
x3 + · · ·+

(
α

n

)
xn + · · ·

(2)　 ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · (−∞ < x < ∞)

(3)　 cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · (−∞ < x < ∞)

(4)　 sin x = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
+ · · ·+ (−1)n x2n+1

(2n + 1)!
+ · · · (−∞ < x < ∞)

(5)　 log(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
+ · · ·+ (−1)n−1xn

n
+ · · · (−1 < x <= 1)

(6)　 tan−1 x = x− x3

3
+

x5

5
− x7

7
+

x9

9
+ · · ·+ (−1)n x2n+1

2n + 1
+ · · · (−1 <= x <= 1)

近似公式

f(x) .=. f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn

xが 0に近いほど，nが大きいほどよい近似値を与える．

また．このとき数学的な誤差Eは

E =

∣∣∣∣∣
f (n+1)(θx)

(n + 1)!
xn+1

∣∣∣∣∣または，E =

∣∣∣∣∣
f (n+1)(0)

(n + 1)!
xn+1 +

f (n+2)(0)

(n + 2)!
xn+2 + · · ·

∣∣∣∣∣

例 2(
√

2などの近似値)　上記の例 1の (1)において，α =
1

2
, n = 4とすれば，

√
1 + x .=. 1 +

1

2
x +

1
2
(1

2
− 1)

2!
x2 +

1
2
(1

2
− 1)(1

2
− 2)

3!
x3 +

1
2
(1

2
− 1)(1

2
− 2)(1

2
− 3)

4!
x4

√
1 + x .=. 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4
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√
2 =

1

10

√
200 =

1

10

√
142 + 4 =

14

10

√
1 +

1

49

√
2 .=.

14

10

{
1 +

1

2

1

49
− 1

8

(
1

49

)2

+
1

16

(
1

49

)3

− 5

128

(
1

49

)4
}

=
149077207

105413504
√

2 = 1.414213562373 · · · √
2 .=. 1.4142135622396

プログラム例 10(
√

2の近似計算)
INPUTÃPROMPTÃ"n=":n

LETÃx=1/49

LETÃroot=1

LETÃb=1/2

LETÃa=1

FORÃk=1ÃTOÃn

ÃÃÃLETÃa=a*(b-k+1)/k*x

ÃÃÃLETÃroot=root+a

NEXTÃk

PRINTÃsqr(2)

PRINTÃ14/10*root

END

問題 1　
√

3や
√

5の近似値を計算するにはどうしたらよいか？　また 3
√

2の近似値を計

算するにはどうしたらよいか？　それらを計算するプログラムを作りなさい．

例 3(Napierの定数 eの近似値)　 e = lim
n→∞

(
1 +

1

n

)n

ではあるが，これを近似計算に用

いるのは能率が悪い．

e = 2.7182818284590 · · ·
(
1 +

1

1000

)1000

= 2.71692393223589

(
1 +

1

10000

)10000

= 2.71814592682522

(
1 +

1

100000

)100000

= 2.71826823717449

そこで，例 1の (2)を x = 1とおいて用いよう．

e .=. 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
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1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

5!
= 2.7166666666666 · · ·

1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

10!
= 2.71828180114638

問題 2　例 3の計算を確かめるプログラムを作れ．

例 4(円周率 πの近似計算 1)　例 1の (6)において x = 1として，

π .=. 4 tan−1 1 = 4
(
1− 1

3
+

1

5
− 1

7
+

1

9
+ · · ·+ (−1)n 1

2n + 1

)

を用いると，

π = 3.1415926535897 · · ·

π .=.

(
1− 1

3
+

1

5
− 1

7
+

1

9
+ · · · − 1

19
+

1

21

)
= 3.2323158094056

π .=. 4
(
1− 1

3
+

1

5
− 1

7
+

1

9
+ · · · − 1

199
+

1

201

)
= 3.15149340107099

π .=. 4
(
1− 1

3
+

1

5
− 1

7
+

1

9
+ · · · − 1

1999
+

1

2001

)
= 3.14259165433958

これは能率が悪い．xの値があまり 0に近くないからである．

問題 3　例 4の計算を確かめるプログラムを作れ．

例4ではxの値が0に近くなかったので，今度はxの値をもっと0に近くして，Maclaurin

の定理を適用するようにしよう．

例 5(Machinの公式)　次のMachinの公式が成り立つ．

π

4
= 4 tan−1 1

5
− tan−1 1

239

α = tan−1 1

5
, β = tan−1 1

239
とおくと，0 < β < α <

π

6
より，0 < 4α− β <

2π

3

また，tan α =
1

5
より，tan 2α =

2 tan α

1− tan2 α
=

5

12

tan 4α =
2 tan 2α

1− tan2 2α
=

120

119

tan(4α− β) =
tan 4α− tan β

1 + tan 4α tan β
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=
120
119
− 1

239

1 + 120
119

1
239

=
120 · 239− 119

119 · 239 + 120
=

119 · 239 + 239− 119

119 · 239 + 120
= 1

tan(4α− β) = 1 , 0 < 4α− β <
2π

3
より，4α− β =

π

4
が成り立つ．

例 6(Machinの公式を用いる πの近似 1)　例 5のMachinの公式と例 1の (6)を用いると

π = 4
[
4

{
1

5
− 1

3 · 53
+

1

5 · 55
− 1

7 · 57
+

1

9 · 59
− · · ·

}

−
{

1

239
− 1

3 · 2393
+

1

5 · 2395
− 1

7 · 2397
+

1

9 · 2399
− · · ·

}]

π .=. 4

[
4

{
1

5
− 1

3 · 53
+

1

5 · 55
− 1

7 · 57
+ · · ·+ (−1)m 1

(2m + 1) · 52m+1

}

−
{

1

239
− 1

3 · 2393
+

1

5 · 2395
− 1

7 · 2397
+ · · ·+ (−1)n 1

(2n + 1) · 2392n+1

}]

ここで，m,nは求めたい近似値の有効桁数に応じてそれぞれ大きくとる．どれくらい

大きくすればよいかは後に述べる．

定理 (交代級数についてのLeibnizの定理　解析教科書 p188 定理 8)

anを 0に収束する単調減少数列，すなわち，

a1 >= a2 >= a3 >= · · · >= 0 , lim
n→∞ an = 0

とするとき，次の無限交代級数

a1 − a2 + a3 − a4 + · · ·+ (−1)n−1an + · · ·
は収束し，その級数の値を Sとすれば，部分和

Sn = a1 − a2 + a3 − a4 + · · ·+ (−1)n−1an

と Sとの差について，

E = |Sn − S| <= an+1

が成り立つ．

証明

S2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n)

S2n+1 = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n − a2n+1)

であることから，

S2 <= S4 <= S6 <= · · · <= S2n <= · · · <= S2n+1 ≤ · · · <= S5 <= S3 <= S1

が成り立つ．
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{S2n}は有界な単調増加数列，{S2n+1}は有界な単調減少数列であるので，それぞれ収
束する．

lim
n→∞S2n = S , lim

n→∞S2n+1 = S ′

とすれば，

S ′ = lim
n→∞S2n+1 = lim

n→∞(S2n + a2n+1) = lim
n→∞S2n + lim

n→∞ a2n+1 = S + 0 = S

以上より，部分和の数列 {Sn}は収束する．また，誤差Eの評価については，

E = |S − Sn| = |(−1)nan+1 + (−1)n+1an+2 + (−1)n+2an+2 + · · · |
= |(an+1 − an+2) + (an+2 − an+3) + · · · |
= an+1 − (an+2 − an+2)− (an+3 − an+4)− · · ·
<= an+1 [証明終]

例 6(Machinの公式を用いる πの近似 1)の続き

例 6の近似式の誤差は上の定理を用いると，

E <= 16 · 1

(2m + 3) · 52m+3
+ 4 · 1

(2n + 3) · 2392n+3

『十進BASIC』は 1000桁の計算をさせることができるので，900桁位までの有効桁の

近似値を求める場合には，丸め誤差は考慮に入れなくてよい．また，m >= 7とすると，

E <=
1

52m+3
+

1

2392n+3

小数点以下N 桁まで計算するには，

1

52m+3
<=

1

2 · 10N+1
,

1

2392n+3
<=

1

2 · 10N+1

すなわち，

m >=
log 2 + (N + 1) log 10

2 log 5
− 3

2
, n >=

log 2 + (N + 1) log 10

2 log 239
− 3

2

例えば，100桁まで計算するには，m >= 71 , n >= 20

200桁まで計算するには，m >= 143 , n >= 41

300桁まで計算するには，m >= 215 , n >= 62

500桁まで計算するには，m >= 358 , n >= 104

900桁まで計算するには，m >= 644 , n >= 188

問題 4　例 6の計算をするるプログラムを作れ．
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プログラム例 11(サインのMaclaurin近似のグラフ)
DECLAREÃEXTERNALÃFUNCTIONÃsinetaylor

DECLAREÃEXTERNALÃSUBÃGRAPH

LETÃleft=-10

LETÃright=10

LETÃbottom=-10

LETÃtop=10

LETÃh=0.001

INPUTÃPROMPTÃ"第何項までの Maclaurin展開　 n=":n

CALLÃGRAPH(left,right,bottom,top,h,n)

INPUTÃPROMPTÃ"拡大率 eは　 0で終了　 e=":e

DOÃWHILEÃe<>0

ÃÃÃLETÃleft=left/e

ÃÃÃLETÃright=right/e

ÃÃÃLETÃbottom=bottom/e

ÃÃÃLETÃtop=top/e

ÃÃÃLETÃh=h/e

ÃÃÃCALLÃGRAPH(left,right,bottom,top,h,n)

ÃÃÃINPUTÃPROMPTÃ"拡大率 eは　 0で終了　 e=":e

LOOP

END

EXTERNALÃFUNCTIONÃsinetaylor(n,x)

LETÃÃt=x

LETÃÃs=x

forÃk=2ÃtoÃn

ÃÃÃLETÃÃt=-t/(2*k-2)/(2*k-1)*x^2

ÃÃÃLETÃÃs=s+t

nextÃk

LETÃÃsinetaylor=s

ENDÃFUNCTION

EXTERNALÃSUBÃGRAPH(left,right,bottom,top,h,n)

CLEAR

SETÃWINDOWÃleft,right,bottom,top

drawÃaxes

SETÃCOLORÃ1

FORÃx=leftÃTOÃright-hÃSTEPÃh

ÃÃÃPLOTÃLINES:x,SIN(x);x+h,SIN(x+h)

nextÃx

SETÃCOLORÃ2

FORÃx=leftÃTOÃright-hÃSTEPÃh

ÃÃÃPLOTÃLINES:x,sinetaylor(n,x);x+h,sinetaylor(n,x+h)

nextÃx

ENDÃsub
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3.2 方程式の解の近似

方程式

f(x) = 0

の解 αを近似する方法について考える.

3.2.1 2分法 (区間縮小法)

x
b0

a0 = a1

a0 + b0

2
= b1 = b2

a1 + b1

2
= a2.......................................................................

........

........

........

........

........

........

........

........

........

........

........

........

........

...

......................................................................................................................................................................................................................

...........................

........

........

........

........

........

......................
................

...................
.......................

..................................
.................................................................................................................................................................................................. ...............

................
...................

.......................
..................................

.......................................................................................................................................................................................................................
.......................................

....................................................................................... .....................
.......................................

.......................................................................................

................................................
.............................................

...........................................
.........................................

.......................................
......................................

.....................................
....................................

...................................
..................................

.................................
................................

................................
...............................

..............................
..............................

.............................
.............................

.............................
............................

.......................

有界閉区間 [a, b]において，f(x)は次の条件を満たしていると仮定する．

・f(x)は有界閉区間 [a, b]で連続

・両端における f(x)の値 f(a)の符号と f(b)における符号は異符号とする．

すなわち，f(a)f(b) < 0

・f(x) = 0の解は有界閉区間 [a, b]において唯一つしかないとする．

このとき，以下の手順で解 αを近似する．

今，f(a) < 0 , f(b) > 0と仮定する．(逆の場合も同様の手順で近似できる)

(0) a0 = a , b0 = bとする．

(1) a0と b0の中点
a0 + b0

2
における f(x)の符号を調べる．

f(
a0 + b0

2
) = 0のときは，解は α =

a0 + b0

2
となり，完了．

f(
a0 + b0

2
) < 0のときは，a1 =

a0 + b0

2
, b1 = b0とする．

f(
a0 + b0

2
) > 0のときは，a1 = a0 , b1 =

a0 + b0

2
とする．

このとき，αは a1と b1の間に存在する．
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(2) a1と b1の中点
a1 + b1

2
における f(x)の符号を調べる．

f(
a1 + b1

2
) = 0のときは，解は α =

a1 + b1

2
となり，完了．

f(
a1 + b1

2
) < 0のときは，a2 =

a1 + b1

2
, b2 = b1とする．

f(
a1 + b1

2
) > 0のときは，a2 = a1 , b2 =

a1 + b1

2
とする．

このとき，αは a2と b2の間に存在する．

· · · · · · · · · · · ·

(k) ak−1と bk−1の中点
ak−1 + bk−1

2
における f(x)の符号を調べる．

f(
ak−1 + bk−1

2
) = 0のときは，解は α =

ak−1 + bk−1

2
となり，完了．

f(
ak−1 + bk−1

2
) < 0のときは，ak =

ak−1 + bk−1

2
, bk = bk−1とする．

f(
ak−1 + bk−1

2
) > 0のときは，ak = ak−1 , bk =

ak−1 + bk−1

2
とする．

このとき，αは akと bkの間に存在する．

b = k − akが要求された精度 (誤差の限界)より，小さくなれば，中点
ak−1 + bk−1

2
を近

似解として採用する．誤差Eは

E <= bk − ak =
1

2k
(b− a)

と評価できるが，能率はよくない．

3.2.2 n等分法

2分法では区間を 2等分ずつ行ったが，ここでは n等分して考える．

今，f(a) < 0 , f(b) > 0と仮定する．(逆の場合も同様の手順で近似できる)

(0) a0 = a , b0 = bとする．

(1) 区間 [a0, b0]を n等分し，隣り合った分点の組で f(x)の符号が異符号になっている分

点の組を求める．その左の点を a1，右の点を b1とする．分点の中で f(x)の値が 0になる

分点があれば，それが求める解なので完了．

(2) 区間 [a1, b1]を n等分し，隣り合った分点の組で f(x)の符号が異符号になっている分

点の組を求める．その左の点を a2，右の点を b2とする．分点の中で f(x)の値が 0になる

分点があれば，それが求める解なので完了．
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· · · · · · · · · · · ·

(k) 区間 [ak−1, bk−1]を n等分し，隣り合った分点の組で f(x)の符号が異符号になってい

る分点の組を求める．その左の点を ak，右の点を bkとする．分点の中で f(x)の値が 0に

なる分点があれば，それが求める解なので完了．

b = k − akが要求された精度 (誤差の限界)より，小さくなれば，中点
ak−1 + bk−1

2
を近

似解として採用する．誤差Eは

E <= bk − ak =
1

nk
(b− a)

と評価できる．能率はは 2分法と比べてどうだろうか？

3.2.3 Newton法

x
x0x1x2

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................

..............................................................................
................
........

.........................................
......................................

...................................
..................................

................................
...............................

..............................
.............................

............................
...........................

...........................
..........................

..........................
.........................

.........................
.........................
........................
........................
........................
........................
.......................
.......................
.......................
.......................
.......................
..................
.................
........................
.................

有界閉区間 [a, b]において，f(x)は次の条件を満たしていると仮定する．

・f(x)は有界閉区間 [a, b]で 2回微分可能で f ′′(x)は定符号

・両端における f(x)の値 f(a)の符号と f(b)における符号は異符号とする．

すなわち，f(a)f(b) < 0

このとき，aと bの間にはただ一つの解を持つ．以下の手順で解 αを近似する．

今，f ′′(x) > 0 , f(a) < 0 , f(b) > 0と仮定する．(他の場合も同様の手順で近似できる)

(0) x0 = bとする．

(1) x0における y = f(x)の接線 y = f ′(x0)(x− x0) + f(x0)を引き，x軸と交わった

交点を x1とする．x1 = x0 − f(x0)

f ′(x0)

(2) 同様に，x1における y = f(x)の接線 y = f ′(x1)(x− x1) + f(x1)を引き，
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x軸と交わった交点を x2とする．x2 = x1 − f(x1)

f ′(x1)

· · · · · · · · · · · ·

(k) xk−1における y = f(x)の接線 y = f ′(xk−1)(x− xk−1) + f(xk−1)を引き，

x軸と交わった交点を xkとする．xk = xk−1 − f(xk−1)

f ′(xk−1)

以上まとめると，



xk = xk−1 − f(xk−1)

f ′(xk−1)

x0 = b (初期値　または，x0 = a)

初期値 x0を aにとるか bにとるかは，f(a)あるいは f(b)が f ′′(x)と同符号になるよう

に選ぶとよい.

誤差の評価を行うのに，f(x)を x = xk−1においてTaylorの定理を適用すると (n = 2)

f(α) = f(xk−1) + f ′(xk−1)(α− xk−1) +
1

2
f ′′(c)(α− xk−1)

2

Ek = |xk − α| =
∣∣∣∣∣xk−1 − α− f(xk−1)− f(α)

f ′(xk−1)

∣∣∣∣∣ =
1

2

∣∣∣∣∣
f ′′(c)

f ′(xk−1)

∣∣∣∣∣ |xk−1 − α|2

ここで，m1 = min
x∈[a,b]

|f ′(x)| , M2 = max
x∈[a,b]

|f ′′(x)|とおけば，

Ek <=
M2

2m1

|xk−1 − α|2 =
M2

2m1

E2
k−1

このような収束を 2次収束といい，非常によい近似になっている．これに対して，2分

法や n等分法はEk <= cEk−1の評価なので，1次収束となっている．

3.2.4 割線法 (セカント法)

Newton法では，接線を用いたがここでは接線の代わりに曲線上の 2点を結ぶ直線 (割

線)を用いてみよう．

2点 (xk−1, f(xk−1)) , (xk, f(xk))を通る直線の方程式は

y =
f(xk)−, f(xk−1)

xk − xk−1

(x− xk) + f(xk)

となるので，x軸との交点は x = xk − (xk − xk−1)f(xk)

f(xk)− f(xk−1)
となる．これを xk+1 とおく．

Newton法と同様に次の式が得られる．



xk+1 = xk − (xk − xk−1)f(xk)

f(xk)− f(xk−1)

初期値　 x0 , x1
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x
x0x1x2x3
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.

Newton法と同様の仮定をおけば，2つの初期値 x0 , x1を f(x)の値が f ′′(x)の符号と同

符号になる 2点を選べばよい．この割線法はNewton法に比べてその能率は若干悪くなる．

3.3 定積分の近似

ここでは，
∫ b

a
f(x) dxの近似値を求める方法について考えてみよう．

3.3.1 区分求積法 (短冊近似)

定積分の定義は，閉区間 [a, b]の分割∆

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

と n個の小区間 [xk−1, xk](k = 1, 2, 3, · · · , n)から，点 ξkを選び，Riemann和

S(∆, {ξk}) =
n∑

k=1

f(ξk)(xk − xk−1)

を考え，分割∆の最大幅 |∆|を 0に限りなく近づけた時の極限

lim
|∆|→0

S(∆, {ξk})

が分割の仕方∆や小区間からの点の選び方 {ξk}に関係なくある一定の値に近づくとき，
その値を，

∫ b

a
f(x) dxと定義する．

今，分割∆を n等分にとり，小区間からの点の選び方 {ξk}を小区間の左端の点 xk−1を

選ぶと，

xk = a +
(b− a)

n
k , ξk = xk−1 = a +

(b− a)

n
(k − 1)

となり，その場合のRiemann和 S(1)
n は
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S(1)
n =

n∑

k=1

f

(
a +

(b− a)

n
(k − 1)

)
b− a

n

{ξk}を小区間の右端の点 xkを選ぶと，その場合のRiemann和 S(2)
n は

S(2)
n =

n∑

k=1

f

(
a +

(b− a)

n
k

)
b− a

n

定積分の定義から，
∫ b

a
f(x) dxの近似値として，nを大きくとって，S(1)

n や S(2)
n を採用

することができる．
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3.3.2 台形近似法
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区分求積法 (短冊近似法)では，各小区間の定積分を長方形で近似したが，ここでは，

(xk−1, yk−1)と (xk, yk)を結ぶ台形で近似する．これは，結果的に，y = f(x)の曲線を折
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れ線で近似することと同じになる．そうすると，近似公式は，

1

2
(y0 + y1)

b− a

n
+

1

2
(y1 + y2)

b− a

n
+ · · ·+ 1

2
(yn−1 + yn)

b− a

n

=
b− a

2n
{y0 + yn + 2(y1 + y2 + · · ·+ yn−1)}

となる．これを台形近似法あるいは台形公式といい，区分求積法 (短冊近似法)のS(1)
n と

S(2)
n の平均

S(1)
n + S(2)

n

2
に等しい．

台形近似法の誤差Eについては次のような評価が得られる．

E <=
(b− a)3M2

12n2
ここで，M2 = max

xı[a,b]
|f ′′(x)|とする．

3.3.3 Simpsonの公式

x
x0 x1 x2 · · · · · · · · · x2n−2 x2n−1 x2n
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区間 [a, b]を 2n等分する．分点を xk = a +
b− a

2n
k (k = 0, 1, 2, · · · , 2n)とし，各分点に

おける yの値を yk = f(xk)とおく．

n個の小区間 [x2k−2, x2k]において，3点 (x2k−2, y2k−2) , (x2k−1, y2k−1) , (x2k, y2k)を通

る 2次曲線で f(x)を近似する．

g(x)が 2次関数のとき，
∫ b

a
g(x) dx =

b− a

6

(
g(a) + g(b) + 4g

(
a + b

2

))
となるので，これを各小区

間に適用すると (a = x2k−2, b = x2k)，
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∫ x2k

x2k−2

g(x) dx =
b− a

6n
(y2k−2 + y2k + 4y2k−1)

これから，近似公式
∫ b

a
f(x) dx =

∫ x2

x0

f(x) dx +
∫ x4

x2

f(x) dx + · · ·+
∫ x2n

x2n−2

f(x) dx

.=.

∫ x2

x0

g(x) dx +
∫ x4

x2

g(x) dx + · · ·+
∫ x2n

x2n−2

g(x) dx

.=.
b− a

6n
(y0 + y2n + 4(y1 + y3 + · · ·+ y2n−1)+

+2(y2 + y4 + · · ·+ y2n−2))

が得られる．これを Simpsonの公式という．

Simpsonの公式の誤差Eの評価については

E <=
(b− a)5

2880n4
M4 , M4 = maxx∈[a,b] |f (4)(x)|

nを大きくするとき台形公式では誤差は
1

n2
の orderなのに対して，Simpsonの公式で

は誤差が
1

n4
の orderとなっている．(これだけ，Simpsonの公式がよい近似になっている)

問題 5　 f(x) = x2− 2 = 0の解を近似するプログラムを，2分法，10等分法，Newtonの

方法，割線法のそれぞれについて作成せよ．

問題 6　定積分
∫ 1

0

4

1 + x2
dxの値を近似するプログラムを，区分求積法，台形公式，

Simpsonの公式のそれぞれについて作成せよ．

問題 7　前問の問題 6において，「誤差の累積」について調べよ．
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4 微分方程式

4.1 微分方程式の例

例 7 (落下運動の方程式)

x : 物体の高さ , g : 重力加速度 (約 9.8m/sec2)

d2x

dt2
= −g

例 8(人口増加モデル１：マルサスの人口法則)

p(t) : 時刻 t における人口 , a : 人口増加率 (定数)

dp(t)

dt
= ap(t)

例 9 (人口増加モデル２：ロジスティック方程式)

p(t) : 時刻 t における人口 , a : 人口増加率 (定数)

dp

dt
= ap− bp2

−bp2 : 居住空間，資源，食料などによる競争に関する項 (b:定数)

例 10 (技術革新の普及：ロジスティック方程式)

N : 農業従事者総数 , c : 定数

p(t) : 時刻 t における新技術を取り入れた農業従事者数

dp

dt
= cp(N − p)

例 11 (捕食者-被食者モデル：Lotka-Volterraの微分方程式)

F : 海の特定区域におけるサメに食べられるある種の魚 (fish)の個体数

S : 同区域におけるサメ (shark)の個体数




dF

dt
= (a− bF − cS)F

dS

dt
= (−k + λF )S

ここで，a, c, k, λ は正の定数で，b は非負の定数である．
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例 12 (振り子の運動方程式)

θ : 振り子の下向き垂直方向からの角度 , l : ひもの長さ

d2θ

dt2
= −g

l
sin θ

例 13 (惑星の運動方程式)

太陽を原点にとり，惑星の軌道面に xy 座標を導入する．C を正の定数として，




m
d2x

dt2
= −C

x

(x2 + y2)
3
2

m
d2y

dt2
= −C

y

(x2 + y2)
3
2

例 14 (経済学の市場モデル)

m個の財について，

pi : 第 i 番目の財の価格

xi(p1, p2, · · · , pm) : 第 i 番目の財の需要量

yi(p1, p2, · · · , pm) : 第 i 番目の財の供給量




dp1

dt
= k1 (x1(p1, p2, · · · , pm)− y1(p1, p2, · · · , pm))

dp2

dt
= k2 (x2(p1, p2, · · · , pm)− y2(p1, p2, · · · , pm))

· · · · · · · · ·
dpm

dt
= km (xm(p1, p2, · · · , pm)− ym(p1, p2, · · · , pm))

ここで，各 ki は正の定数で調整速度とよばれている．方程式の右辺に現れる

xi(p1, p2, · · · , pm)− yi(p1, p2, · · · , pm)

を Ei(p1, p2, · · · , pm) であらわし，これを超過需要関数とよぶ．

例 15 (直交曲線群)

xy 平面上の曲線群

F (x, y, c) = 0

に含まれるすべての曲線と直交する曲線をこの曲線群の直交曲線という．曲線群の曲線上

の各点における接線の傾きは，陰関数の定理より

dy

dx
= −Fx

Fy
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で与えられる．よって，これと直交する曲線の接線の傾きは

dy

dx
=

Fy

Fx

となるので，直交曲線のみたすべき微分方程式は c を消去して得られる方程式である．

例えば，放物線群 y − cx2 = 0 の直交曲線は
dy

dx
=

Fy

Fx

=
1

−2cx
, c =

y

x2
より，

dy

dx
= − x

2y

(4.1) F (x, y, y′, y′′, · · · , y(n)) = 0

のように,独立変数 x と未知関数 y とそれらの導関数 y′, y′′, · · · , y(n) の間の関係式に

よって与えられる．未知関数の最高次の導関数が n 次導関数のとき，この微分方程式を

n 階 (常)微分方程式という．

また，未知関数と関係式がが 2個以上の場合もある．

(4.2)





F1(x, y1, y
′
1, · · · , y(n1)

1 , y2, y
′
2, · · · , y(n2)

2 , · · · , ym, y′m, · · · , y(nm)
m ) = 0

F2(x, y1, y
′
1, · · · , y(n1)

1 , y2, y
′
2, · · · , y(n2)

2 , · · · , ym, y′m, · · · , y(nm)
m ) = 0

· · · · · · · · · · · · · · · · · ·
Fm(x, y1, y

′
1, · · · , y(n1)

1 , y2, y
′
2, · · · , y(n2)

2 , · · · , ym, y′m, · · · , y(nm)
m ) = 0

上記の 2つの方程式は未知関数の数を増やすことによって，次のような 1階の連立微分

方程式に帰着することができる．

(4.3)





F1(x, y1, y
′
1, y2, y

′
2, · · · , ym, y′m) = 0

F2(x, y1, y
′
1, y2, y

′
2, · · · , ym, y′m) = 0

· · · · · · · · · · · · · · · · · ·
Fm(x, y1, y

′
1, y2, y

′
2, · · · , ym, y′m) = 0

また，微分方程式が次の 3つのように書かれているとき，正規形に書かれているという．

(4.4) y(n) = f(x, y, y′, y′′, · · · , y(n−1))

(4.5)





y
(n1)
1 = f1(x, y1, y

′
1, y

′′
1 , · · · , y(n1−1)

1 , · · · · · · , ym, y′m, y′′m, · · · , y(nm−1)
m )

y
(n2)
2 = f2(x, y1, y

′
1, y

′′
1 , · · · , y(n1−1)

1 , · · · · · · , ym, y′m, y′′m, · · · , y(nm−1)
m )

· · · · · · · · · · · · · · · · · ·
y(nm)

m = fm(x, y1, y
′
1, y

′′
1 , · · · , y(n1−1)

1 , · · · · · · , ym, y′m, y′′m, · · · , y(nm−1)
m )
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(4.6)





y′1 = f1(x, y1, y2, · · · , ym)

y′2 = f2(x, y1, y2, · · · , ym)

· · · · · · · · · · · · · · · · · ·
y′m = fm(x, y1, y2, · · · , ym)

x のある区間で微分方程式を満たす関数を微分方程式の解とよぶが，通常，微分方程式

の解は無数に存在する．方程式 (4.1)や (4.4)の方程式の場合には，n個の任意定数を含ん

だ解が存在するが，そのような解を一般解とよぶ．任意定数を含まない解 (任意定数にあ

る数が代入された解)を特殊解とよび，一般解からは得られない解を特異解とよぶ．ま

た，(4.2)や (4.5)の方程式の一般解は n1 + n2 + · · · + nm 個の任意定数を含み，(4.3)や

(4.6)の方程式の一般解は m 個の任意定数を含む．

無数にある解の中から，特定の解を定めるためには，付帯条件を与えておく必要があ

る．例えば，(4.1)や (4.4)の場合には，

x = x0 において，y(x0), y
′(x0), · · · , y(n−1)(x0) の値を指定する．

(4.2)や (4.5)の場合には，

x = x0 において，

y1(x0), y
′
1(x0), · · · , y(n1−1)

1 (x0)

y2(x0), y
′
2(x0), · · · , y(n2−1)

2 (x0)

· · · · · · · · ·
ym(x0), y

′
m(x0), · · · , y(nm−1)

m (x0)

の値を指定する．

このような付帯条件を初期条件 (Cauchy 条件)という．

また，異なる 2点 x = x1 と x = x2 において，未知関数の値や導関数の値を指定する

ような条件を境界条件という．一般に，解を一つに定めるためには任意定数の個数だけ

条件を与える必要がある．

例 7の解法

d2x

dt2
=

d

dt

(
dx

dt

)
= −g より，

dx

dt
=

∫
(−g) dt + C1 = −gt + C1となり，さらに，

x =
∫

(−gt + C1) dt + C2 = −1

2
gt2 + C1t + C2となる．これが一般解であり

x = −1

2
gt2 + 2t などは特殊解である．この方程式には特異解はない．
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微分方程式を解く方法については，

・積分を用いて解く方法（求積法による解法）

・無限級数を用いて解く方法

・数値計算で近似解を求める方法

・積分方程式に帰着して逐次近似で近似解を求める方法

などがある．また，求積法を用いて解を具体的に書き下すことのできる微分方程式はそれ

ほど多くない．解を書き下すことはしないで，解のさまざまな性質について調べることも

ある．

4.2 微分方程式の数値解法

この節では，次のような 1階の連立微分方程式の初期値問題の数値解法について説明す

る．未知関数は x, y の２個で説明するが，3個以上の方程式についても同様のことが言

える．

(4.7)





dx

dt
= f(t, x, y) x(t0) = x0

dy

dt
= g(t, x, y) y(t0) = y0

方程式 (4.7)を t0 <= t <= T の範囲で近似的に解きたい．いま，この区間 [t0, T ] を N

等分し，一つの小区間の幅を h =
T − t0

N
とおこう．そして，n 番目の分点を t = tn，解

x = x(t) , y = y(t) の t = tn における値を xn = x(tn) , yn = y(tn) としよう．すなわち，

(4.8)





tn = t0 + nh

xn = x(tn)

yn = y(tn)

とする．ここでは，t = tn における xn , yn を近似的に定める．他の t における x , y の

値は折線によって定められているものとする．

4.2.1 Cauchy-Eulerの折線法

平均値の定理より，

(4.9)





xn+1 − xn

h
=

x(tn+1)− x(tn)

h
=

dx

dt
(tn + θ1,nh)

yn+1 − yn

h
=

y(tn+1)− y(tn)

h
=

dy

dt
(tn + θ2,nh)

が成り立つ．(4.9)の右辺は，
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(4.10)





dx

dt
(tn + θ1,nh) = f (tn + θ1,nh, x(tn + θ1,nh), y(tn + θ1,nh))

dy

dt
(tn + θ2,nh) = g (tn + θ2,nh, x(tn + θ2,nh), y(tn + θ2,nh))

となり，この右辺は，h が十分小さいとき，すなわち N が十分大きいとき，次のように

近似する．

(4.11)





f (tn + θ1,nh, x(tn + θ1,nh), y(tn + θ1,nh)) .=. f (tn, x(tn), y(tn))

g (tn + θ2,nh, x(tn + θ2,nh), y(tn + θ2,nh)) .=. g (tn, x(tn), y(tn))

すると，初期値問題 (4.7)の次のような近似解が得られる．

(4.12)





tn+1 = tn + h

xn+1
.=. xn + hf(tn, xn, yn)

yn+1
.=. yn + hg(tn, xn, yn)

この様な近似解法をCauchy-Eulerの折線法という．Cauchy-Eulerの折線法による誤差

の orderは一つの小区間においては h2 の orderであり，全区間においては h1 の orderで

ある．

4.2.2 Runge-Kutta法

Cauchy-Eulerの折線法は大変 simpleな近似法であったが，あまり精密ではない．もう

少し精密にしたものが次のRunge-Kutta法である．





tn+1 = tn + h

a1 = hf(tn, xn, yn) , b1 = hg(tn, xn, yn)

a2 = hf(tn +
h

2
, xn +

a1

2
, yn +

b1

2
) , b2 = hg(tn +

h

2
, xn +

a1

2
, yn +

b1

2
)

a3 = hf(tn +
h

2
, xn +

a2

2
, yn +

b2

2
) , b3 = hg(tn +

h

2
, xn +

a2

2
, yn +

b2

2
)

a4 = hf(tn + h, xn + a3, yn + b3) , b4 = hg(tn + h, xn + a3, yn + b3)

xn+1
.=. xn +

1

6
(a1 + 2a2 + 2a3 + a4)

yn+1
.=. yn +

1

6
(b1 + 2b2 + 2b3 + b4)

(4 - 2)

Runge-Kutta法による誤差の orderは一つの小区間においては h5 の orderであり，全

区間においては h4 の orderである．
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問題 8　Runge-Kutta法を次の微分方程式に当てはめよ．ただし，分割しない区間 [t0, t1]

で考える．

dx

dt
= f(t)

これは，積分
∫ t1

t0
f(t) dt の Simpsonの近似公式に対応していることを確かめよ．

冬休みの課題 (提出はA4用紙にて提出し，プログラムはファイルでも提出すること　期

限は 1月 27日 (金)ファイルの提出方法は授業の時に指示します．

1.　プリント p20の例 13(a = 1)の曲線を描くプログラムを作れ．座標系をうまく定めよ．

2.　プリント p20の例 14(a = 1)の曲線を描くプログラムを作れ．座標系をうまく定めよ．

3.　定積分∫ 1

0
4
√

1− x2 dx

を近似するプログラムを短冊近似法 1,短冊近似法 2,台形近似法で作れ．

4.　次の公式を証明し，これとMaclaurin展開を用いて円周率 πを近似するプログラム

を作れ．
π

4
= 2 tan−1 1

2
− tan−1 1

7

5.　方程式

2 sin x = x

の正の解の近似解を 2分法で求めるプログラムとNewton法で求めるプログラムを作れ．

6.　プリント p20～p21の陰関数のグラフを微分方程式に帰着して描く方法を適用して．

f(x, y) = x4 + xy + y4 − 1 = 0

で定まる曲線を描くプログラムを作れ．ただし，微分方程式の近似解法は Runge-Kutta

法を用いよ．また，座標系をうまく定めよ．
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5 乱数を用いたシミュレーション

この節は以下の書を参考にした．両書とも絶版であるが，インターネットにて閲覧で

きる．

脇本和昌著：『乱数の知識』　 1970年　森北出版 (絶版)1

宮武修・中山隆著：『モンテカルロ法』　 1960年　日刊工業新聞社 (絶版)2

乱数列とは規則性のない，次に出てくるのが予測できないような数列のことである．乱

数列の要素を乱数 という．

サイコロを振って出る目を順に並べれば {1,2,3,4,5,6} からなる乱数列が得られる．あ
るいは同じ大きさの 10個のボールに 0～9までの数字を書いて，箱に入れ，無作為にボー

ルを取り出し，番号を記し，ボールを箱に戻して，また無作為にボールを取り出し番号を

記していけば，0～9からなる乱数列が得られる．

5.1 乱数の種類

自然乱数 ：0以上または 1以上の整数が不規則に現れる乱数．あらゆる 0以上 (または 1

以上)の整数を考えても良いがたいていの場合には，現れる数の最大数を定めておく場合

が多い．

一様乱数：実数の区間を定めて，その区間内の実数が同じ確率で出現するような乱数．『十

進BASIC』等のプログラミング言語や『Excel』等では区間 [0, 1) での (擬似)一様乱数が

組み込まれている．この授業では特にことわらなければ，一様乱数としての区間は，[0, 1)

または [0, 1]を考えることにしよう．

正規乱数 ：その分布が正規分布になるような乱数，正規分布とは,確率密度関数が

f(x) =
1√
2πσ

exp(−(x− µ)2

2σ2
)

の形をした分布で，この場合の平均は µ, 標準偏差は σ である．µ = 0 , σ = 1 であるよ

うな正規分布を標準正規分布という．

5.2 擬似乱数の作り方

コンピュータは規則性をもって計算するので，コンピュータを用いて厳密な意味の乱数

を作ることは出来ない．そこで，乱数に近い性質を持った数列を作る必要がある．このよ

1http://www.sci.kagoshima-u.ac.jp/˜ebsa/wakimoto01/index.html
2http://www.sci.kagoshima-u.ac.jp/˜ebsa/miyatake01/index.html
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うな数列を擬似乱数列といい，その要素を擬似乱数という．

5.2.1 平方採中法 (1946年　 von Neumannによる)

2n桁の擬似乱数を作るとき，x1として，2n桁の数を一つ選ぶ．x1 を平方すると 4n 桁

の数が出来る.(4n 桁に達しないときは，不足桁数分だけ先頭に 0を追加する)　真ん中の

2n桁の数を x2とする．これを繰り返す．この方法は偶数桁の乱数しか得られないことと

後ろの方で短い周期になったしまったり，0が並んでしまうという欠点がある．

例 16　 n = 4 として 8桁の擬似乱数を作ろう．x1 = 12345678とする．

x1 = 12345678

x2
1 = 0152415765279684 , x2 = 41576527

x2
2 = 1728607597381730 , x3 = 60759738

x2
3 = 3691745761828640 , x4 = 74576182

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
この数列は 10351番目以降はすべて下 4桁が 0になってしまう．また，x10353 = x10453 =

8656000となり，10353以降は周期100になってしまう．また，この数列の最大値は99988827，

最小値は 15390である．

5.2.2 線形合同法 (混合合同法)

3個の自然数 a, c, mを選ぶ．mは十分大きな自然数をとり，x1をmより小さな自然数

とし，以下のような漸化式にて数列を作る．

xn+1 = a · xn + cをmで割った余り ≡ a · xn + c ( mod m)

周期を長くするための性質として，次のことが知られている．

性質　 m = 10p , a ≡ 1 mod 20 , c ≡ 1, 3, 7, 9 mod 10

とすると，任意の初期値 x1に対して，周期 10pをもつ．これは，勿論，最大周期であり，

0～(10p − 1) までの数がすべて現れることを示している．

(前の　脇本和昌著：『乱数の知識』を参考にした)

例 17　上の性質を利用して 4桁の擬似乱数を作ろう．

m = 104 , a = 2341 ≡ 1 mod 20 , c = 4567 ≡ 7 mod 10 . x1 = 1234とする．

x1 = 1234

2341 · 1234 + 4567 = 2893361 ≡ 3361 mod 10000 , x2 = 3361

2341 · 3361 + 4567 = 7872668 ≡ 2668 mod 10000 , x3 = 2668

2341 · 2668 + 4567 = 6250355 ≡ 355 mod 10000 , x4 = 355
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最近の優れた擬似乱数発生法としてメルセンヌ・ツイスタ (Mersenne twister)というも

のがあるらしい．

5.2.3 擬似一様乱数の作り方

区間 [0, 1) での擬似一様乱数は上記で得られた擬似自然乱数列 {xk}の最大値をM，最

小値をmとするとき，{ xk −m

M −m + 1
} を採用すればよい．

問題 9 　例 16，例 17の各場合について，それらを求めるプログラムを作れ．また，それ

らから，擬似一様乱数も作りなさい．さらに，それぞれの場合について，擬似一様乱数を

10000個発生させ，0.05刻みで度数分布表を作り，それを棒グラフで表示しなさい．

問題 10 　例 16，例 17の各場合について，問題 9で得られる 10000個の擬似一様乱数を

用いて，サイコロを 10000回投げるシミュレーションを行い，各目が何回出たかを数え，

それを棒グラフで表示しなさい．

5.2.4 その他の擬似乱数の作り方

確率密度関数 f(x) を持つ擬似乱数の作り方

確率密度関数 f(x) の分布関数を F (x) とする．

F (x) =
∫ x

−∞
f(t) dt

このとき，y = F (x) とすると，dy = f(x)dxより，xが確率密度関数 f(x) の分布とす

ると，yは区間 [0, 1] の一様分布となる．逆にいえば，yが区間 [0, 1] の一様分布とすれば，

xは確率密度関数 f(x) の分布となる．このことから，

y1 , y2 , y3 , · · ·

を一様乱数列とすれば，

x1 = F−1(y1) , x2 = F−1(y2) , x3 = F−1(y3) , · · ·

確率密度関数 f(x) を持つ乱数列となる．

指数分布 f(x) = λe−λx を持つ擬似乱数の作り方

分布関数は

y =
∫ x

0
λe−λt dt = 1− e−λx , x = F−1(y) = −1

λ
log(1− y)

xn = −1

λ
log(1− yn)
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{yn}を一様乱数列とするとき {−1

λ
log(1 − yn)} は指数分布 f(x) = λe−λx を持つ乱数

列となる．{yn}が区間 [0, 1)の一様乱数であれば，{1− yn}は区間 (0, 1]の一様乱数とな

るので，{yn}の代わりに，{1 − yn}を用いてもよい．すると，{−1

λ
log yn} も指数分布

f(x) = λe−λx を持つ乱数列となる．

擬似標準正規乱数の作り方

標準正規分布 f(x) =
1√
2π

exp(−x2

2
)の分布関数は，

F (x) =
∫ x

−∞
1√
2π

exp(−t2

2
) dt

であり，それを初等関数では表せない．また，その逆関数を求めることは難しい．そのた

めに，擬似標準正規乱数は次のような方法で作られる．

擬似標準正規乱数の作り方 1(中心極限定理の応用)

中心極限定理

x1 , x2 , x3 , x4 . · · · , xn , · · ·
を平均µ，分散σ2 のある分布に従う乱数列とするとき，それらを順にn個ずつとった平均

y =
x1 + x2 + · · ·+ xn

n

の列は，nを大きくすると，平均がµ，分散が
σ2

n
の正規分布に近づく．また，z =

√
n(y − µ)

σ
とすると，zは標準正規分布に近づく．(前の　脇本和昌著：『乱数の知識』を参考にした)

n = 12とし，{xn}を区間 [0, 1) での一様乱数 x1 , x2 , x3 , · · · , x12 とすると，

µ =
1

2
, σ =

1√
12
より，

z = x1 + x2 + x3 + · · ·+ x12 − 6

とすると，zは標準正規乱数に近いものとなる．

問題 11 　十進 BASICに組み込まれた擬似一様乱数 RND を用いて，上の方法で擬似標

準正規乱数を 10000個発生させ，0.05刻みで度数分布表を作り，それを棒グラフで表示し

なさい．

擬似標準正規乱数の作り方 2(Box-Muller法)

2個の区間 [0, 1) での擬似一様乱数 u , v をとり，

x =
√−2 log u cos 2πv

y =
√−2 log u sin 2πv

とすると，x , yは独立な擬似標準正規乱数になる．
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[簡単な証明]　 2つの式を平方して加えると

−2 log u = x2 + y2

u = exp

(
−x2 + y2

2

)
,

∂u

∂x
= −x exp

(
−x2 + y2

2

)
,

∂u

∂y
= −y exp

(
−x2 + y2

2

)

下の式を上の式で割ると

tan 2πv =
y

x

v =
1

2π
tan−1 y

x
,

∂v

∂x
= − 1

2π

y

x2 + y2
,

∂v

∂y
=

1

2π

x

x2 + y2

この変数変換の Jacobiの行列式 (Jacobian)は

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣∣∣

∂u

∂x

∂v

∂x

∂u

∂y

∂v

∂y

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

−x exp

(
−x2 + y2

2

)
− 1

2π

y

x2 + y2

−y exp

(
−x2 + y2

2

)
1

2π

x

x2 + y2

∣∣∣∣∣∣∣∣∣∣

= − 1

2π
exp

(
−x2 + y2

2

)

以上より，

dudv =

∣∣∣∣∣
∂(u, v)

∂(x, y)

∣∣∣∣∣ dxdy =
1√
2π

exp

(
−x2

2

)
1√
2π

exp

(
−y2

2

)
dxdy

となり，これは uと vが区間 [0, 1) での一様分布であれば，xと yが独立な標準正規分布

であることを示している．

問題 12 　十進BASICに組み込まれた擬似一様乱数 RND を用いて，Box-Muller法で擬

似標準正規乱数を 10000個発生させ，0.05刻みで度数分布表を作り，それを棒グラフで表

示しなさい．

擬似Poisson乱数の作り方

Poisson分布
e−λλk

k!
(k = 0, 1, 2, 3, · · ·)

に従う擬似乱数を作るには次のようにすればよい．

x1, x2, x3, · · ·
を擬似一様乱数とするとき，

kn−1∑

i=0

e−λλi

i!
<= xn <

kn∑

i=0

e−λλi

i!

となるような knを定める．すると，

k1, k2, k3, · · ·
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は擬似 Poisson乱数列となる．

[簡単な証明]　一般に，離散型確率分布 pkをもつ擬似乱数を作るには，

x1, x2, x3, · · ·
を擬似一様乱数とするとき，

kn−1∑

i=0

pi <= xn <
kn∑

i=0

pi

となるような knを定める．すると，

k1, k2, k3, · · ·
は離散型確率分布 pkをもつ擬似乱数列となる．なぜなら，

kn−1∑

i=0

pi <= xn <
kn∑

i=0

pi

となる確率は
kn∑

i=0

pi −
kn−1∑

i=0

pi = pkn であるから．

問題 13　十進 BASICに組み込まれた擬似一様乱数 RND を用いて，上の方法で λ = 2

である擬似 Poisson分布乱数を 1000個発生させ，度数分布表を作り，それを棒グラフで

表示しなさい．

5.3 乱数を用いたシミュレーション (モンテカルロ法)

例 18(定積分の計算)　一様乱数列を

x1 , x2 , x3 , · · ·
とし，N を十分大きく取ると，

∫ 1

0
f(x) dx .=.

f(x1) + f(x2) + · · ·+ f(xN)

N

となる．

問題 14　例 18の方法で
∫ 1

0
x2 dx　の近似値を十進BASICに組み込まれた擬似一様乱数

RND を 100000個用いて計算しなさい．また，
∫ 1

0
4
√

1− x2 dxについても同様のことを

しなさい．

例 19(重積分の計算)　一様乱数列を

x1 , y1 , x2 , y2 , x3 , y3 , · · ·
とし，N を十分大きく取ると，

∫ 1

0

∫ 1

0
f(x, y) dxdy .=.

f(x1, y1) + f(x2, y2) + · · ·+ f(xN , yN)

N

となる．


