
課題の補足説明と課題4の証明
課題 1の補足

計算を速くするために，1000桁モードは用いない．

課題 2の補足

三角関数が用いられているので，1000桁モードは用いない．

r = f(θ) = a cos θ

x = f(θ) cos θ , x = f(θ) sin θ (0 <= θ <= 2π)

プログラムでは θの代わりに tを用いている．

課題 3の補足

精密な計算ではないので，1000桁モードは用いない．

課題 4の証明
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課題 4の補足

精密な計算なので，1000桁モードで実行する．

log 2 + 1001 log 10

2 log 2
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= 1661.6 · · · ,
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− 3
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= 590.9 · · ·

以上より，tan−1 1

2
の展開はm = 1662項まで，tan−1 1

7
の展開はm = 591項まで取る．
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課題 5(2分法)の補足

三角関数が用いられているので，1000桁モードは用いない．

f(1) = 2 sin 1− 1 = 0.68 · · · > 0 , f(2) = 2 sin 2− 2 = −0.18 · · · < 0

より，a0 = 1 , b0 = 2
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課題 5(Newton法)の補足

三角関数が用いられているので，1000桁モードは用いない．

f(1) = 2 sin 1− 1 = 0.68 · · · > 0 , f(2) = 2 sin 2− 2 = −0.18 · · · < 0

f ′′(x) = −2 sin x < 0 in [1, 2]より，x0 = 2

課題 6の補足
dx

dt
= fy(x, y) = x + 4y3 ,

dy

dt
= −fx(x, y) = −(4x3 + y)

f(x, y) = 0を満たす点は，(1, 0)，(1,−1)，(0, 1)などがある．プログラム例では

x0 = 1 , y0 = 0を用いている．

hは小さくした方がよい．
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