1. 次の関数の偏導関数を求めよ.(10点)

(1)
$$f(x,y) = x^4 + 2x^2y^2 + 3y^4$$

(2)
$$f(x,y) = \frac{x}{x^2 + y^2}$$

- ${f 2}$. 関数 $z=f(x,y)=e^{x^2+2xy+3y^2}$ の全微分 dz を求めよ.(5 点)
- $oldsymbol{3}$. 曲面 $x^2+2y^2+3z^2-9=0$ の点 (2,1,1) における接平面と法線の方程式を求めよ.(10点)
- **4.** 曲線 $x(x-1)^2 y^2 = 0$ の特異点を求めよ. (10 点)
- ${f 5}$. 関数 z=f(x,y) に対して,合成関数 $z=f(t^2+2,3t)$ の導関数 ${dz\over dt}$ を計算せよ.(10 点)
- **6.** $b\frac{\partial z}{\partial x}=a\frac{\partial z}{\partial y}$ を満たす x,y の関数 z は ax+by だけの関数であることを証明せよ. ただし,a,b はどちらかは 0 でない定数とする. $b\neq 0$ の場合だけ証明せよ.(10 点) (ヒント 変数変換 ax+by=u ,x=v を考えよ)
- **7.** 関数 z = f(x,y) = xy(6-x-2y) の極値を求めよ.(20 点)
- **8.** 関係式 $F(x,y)=x^2-xy+2y^2-7=0$ によって定まる陰関数 y=f(x) について,次の問に答えよ.(15 点)
 - (1) $\frac{dy}{dx}$ を計算せよ.
 - (2) 陰関数 y = f(x) の極値を求めよ.
- $oldsymbol{9}$. 条件 $x^2+y^2-5=0$ のもとで関数 f(x,y)=2x+4y の極値を取る点の候補者を 2 点求めよ . (10 点)
- 10. 関数 $f(x) = \sqrt{1+2x}$ を Maclaurin 展開せよ. (ただし、n=4まで計算せよ)(15点)

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \cdots$$