REM Pascalのリマソン LET a=1 LET b=1.2 SET WINDOW -1.3*(a+b),1.3*(a+b),-1.3*(a+b),1.3*(a+b) DRAW axes DEF f(t)=a*COS(t)+b LET h=0.01 SET LINE COLOR 2 FOR t=0 TO 2*PI-h STEP h PLOT LINES:f(t)*COS(t),f(t)*SIN(t);f(t+h)*COS(t+h),f(t+h)*SIN(t+h) WAIT DELAY 0.01 NEXT t END -------------------------------------------------------------------------- REM 方程式の解の近似(2分法) LET a=2 LET b=3 DEF f(x)=x^2-5 FOR k=1 TO 1000 IF f((a+b)/2)>0 THEN LET b=(a+b)/2 IF f((a+b)/2)<0 THEN LET a=(a+b)/2 IF f((a+b)/2)=0 THEN EXIT FOR NEXT k PRINT (a+b)/2 PRINT SQR(5) END ------------------------------------------------------------------------- REM 方程式の解の近似(Newton法) LET x=3 DEF f(x)=x^2-5 DEF f1(x)=2*x FOR k=1 TO 11 LET x=x-f(x)/f1(x) IF k=1 THEN print x NEXT k PRINT x PRINT sqr(5) END -------------------------------------------------------------------------