20 0O40dd

20 000700000 @0OO0O 2004/09/140000)

001 (0000opooooooooon)

00 Fermat 00000 (FermatO O )
O2"+y"=2"0n230000000 (00000000)000000000O0O
gboO=0003000000000

gooooogn
ooOo2000000000000000
goooo

00 Goldbach O O
2000000000000 20000000000000
goooo

002(00000000000000000)
000000000000000000000300000000000000000
00001000

000 11,13,17,19

000000000000000000 160000000 100000
(200000000000000000100000)

003 (000000 RiemannOOOOO)
Riemann O O

ORiemann O OO OO0
Q)—i+i+i+ Ly
)T s T s T s s



2 020 0000

1
O000000oooo(@ooo)ooooooo Re(s):§DDDDDDDD
gboboboooobooooonoo

004 (0000000000000 0O0O0O0=0000)
mz)=200000000
7(10)=4 , 7(100)=25 , =(1000)= 168
7(10000) = 1229 , 7(4 x 10?%) = 7.83964159847056303858 x 102°
( x m(x) )

y
gz W

3

x) ~

log x

005 (000000000000O0O0O0O)
224036583 _ 1 . 7930 57330000
2" -10000000000 (Mersenne) 0, 0000000000000 O00O0O0O
gbobboooobbbuooobbodo
gbgbbobooboobobobobbooboboobooobobbobooobad

006 (100000000O0ODOOO3000000)
gbbbooooobbodooon
gbobuoooobbbuoooobbbooooboood

007(00000000)
0000000000000000000000000000000000
000000000000000000000000000000000

ooo

1]0 Neal Koblitz, A Course in Number Theory and Cryptography (second edition),Springer,1994
20000 00,0 00 0b00—000b0oboooooobob—0O,0000, 2002

JJ 000 O,0000000—00000000D0—0,000 BLUE BACKS, 1980

[
[
[
4000000,0000000000,000, 2003

]
]
]
]

O000000ooo1o00000goooooooooo



2.1. =00 3

2.1 »—00

giloono
(357.062+-+ )10 =3-102+5-10" +7-10°+0-107 ' +6-1072+2- 1073 + - - -
Obo—00
(ququ coodyd_qd_g - )b - dk,l-bk‘l—kdk,yb’“‘?—k« . ~+d0~b0+d,1~b‘1+d,2~b‘2+~ ..
b:base(DD0)00ODO d; : digit(OO)

200 (binary system) 0 O O bit: binary digit 00000000 0 or 1
11<yL26000 002000000 A0Zz000000000O0OO
1nN<pL360000090000000O00O0O0O10O030000 A0DZO000O00OO0O
gooooodileonon

0,1,2,3,4,5,6,7,8,9,A(10), B(11), C(12) , D(13) , E(14) , F(15)
googo

Example I1.1.10 (a) (11001001)y =1-27+1-2041-234+1=128+64+8+1 =201
(b) (BAD)ys =1-26%+0-26" +3-26° = 676 + 3 = 679

(B.AD)os =1-26°+0-26"" +3-2672 =1+

Example 11.1.20 1600 1990 rO0000DO000O70O0O0O0OOoOOoO

316
7) 160 7) 199 3 240357
7) 22 1 7) 28 0 — T
7) 3 7) 4 4 (1254)7
(16030);
0 0 T
(161554);
160 = (316); 199 = (403); (316)7 x (403); = (161554);

Example I1.1.3

110
(11001001)5+ (100111)y = (101) + (110)

(100111),



4 020 0000

101

100111 ) 11001001
100111

101101

100111

110

Example 11.1.40 10°0 20007000260000000
105 = (11110100001001000000)5 = (11333311); = (CEXHO)a4

26 ) 1000000 --- 14(0)
26) 38461 ---  7(H)
26) 1479 --- 23(X)
26 ) 56 A(E)
26 ) 2 2(C)

Example I1.1.50 7 = 3.1415926--- 0 200000000 150 (vO)O0OoooOoOO
O0d2c0000000030000000

3= (11)y

0.1415926 - =d_1 -2 ' +d_9-2724+d_3-273+--.

x 2 02831852 --=d_1+d o-27'+d 43-2724+...00000d.,=0
X 2 0.5663704---=d_o+d_5-27 ' +d_4,-22+---00000d_5=0
x 2 1.1327408 - - =d_s+d_4-27'+d_5-272+... 00000 d_3=1
10000x 2 02654816+ =d_y+d_5-2"'+dg-2724--- 00000 d_4=0
x 2 0.5309632 -+ - =d_s5+d_¢-27'+d_7-22+-..00000d_5=0
X 2 1.0619264 - =d_g+d_7-2"'+d_g-2724 .- 00000 d_g=1

10000x 2 01238528 =d -4+d g -2 +d ¢-224+...00000d_,=0
00000 7 =3.1415926 - - - = (11.0010010 - - - ),

3= (D)

0.1415926 - - =d_1 - 2671 +d - 2672 +d_3-2673 + -~

x 26  3.6814076---=d_+d 5-26"1+d 5-262+-.- 00000 d_; =3 = (D)
30000x% 26 17.716597---=d_y+d_5-26"'4+--- 00000 d_y =17 = (R)gs



2.1. =00 5

170000x% 26 186315227 =d_g+d_4-26"'+--- 00000 d_g = 18 = (S)g
00000 7 =3.1415926- - = (D.DRS - - - )o

00 1-10 (212); x (122)5 =?

00 1-20 (40122); + (126); =?

00 1-30 (101101)y x (11001), =7
000 (10011001)y = (1011)y =?

oot 1-40 (YES)26 X (NO)26 =7
000 (JQVXHT)g =+ (WE)gs =?

OO0 1-50e=27182818--- 0200000000 150000000000260000
oboob300b00000

00 1—6D§D b—OOOooOOoO0bO0Ob0OO0 fObOD0OO0ODODOODODObODOOD
¥ -10d00000000000000000000000

00 1-70 ()0 16000000 009,10(A),11(B),12(C),13(D),14(E),15(F) 00000
00 (131B6C3) 16 + (1A2F)15 =7

()0 20000 160000000000000000001600002000000
oooooooo.

oo 1-8000 1-16 00



6 020 0000

2.2 Divisibility(0O0) 0 Euclid00 0O

000 a,b:00 (integer) D000

alp €% 3¢: 000 s.4.0 b=ad

O00000«O0 000000000 b000 (diviser) DO D000 « 000 (multiple)
goooooon

0000 (proper diviser)D O OO OO0OOOO

000000 (non-trivial diviser)D OO0 OO0 100000

00 (prime number)J 100000000010 00000000C00O0OOOOOO

ud

000 (composite number)D 00000 1000000000000O0OO

pUOD0OODODODOO

pollb €5 pe b0 000 pott fo

Divisibility 0 O O O 0O O

1.0alb OO0 VYe:000 = O albe
2.0alb OO ble0 = 0O alc
3.0alb OO alcO =0 a|(bxc)

0000000 (The Fundamental Theorem of Arithmetic)
0000000 (0000000 0)0oo0UooDpDoooooooooOooo
0000000000000 0(00 4200=2%-3-52-7)

Divisibility 0 0 0000 (0 0)
4.0p:000,0albce=0a|b00000 ple
5.0 mla0,0 nje0000 mOn000000 (000)000000 = O mnla




2.2. Divisibility(000) 0 Euclid 0 0 00 7

0000000000000

0 n=pfpg - p(00000)
Oo0oo0b0.0000D00dO

Od=p"py-pf (05 <)
O000000000n=p"py?---p-r00000C0O0O

O (a1 +1)(ag+ 1) (o + 1)
0000(004200=2%-3.52.7000000000 3+ 1)(1+1)(2+1)(1+1)=480)

Jobo0o0oob 20000 «eOb00000eD0 pOO0DDOODODODOOODOOODOO
00000 (greatest common diviser) 0 0 0 0 g.c.d.(a,b) D00 00

gcd(a,)Ja0d b000000e0 V00000 OODODODODODDODOOOOODOOOO
RN

OO0 a=pi"ps® - ppr

00 b=pps?--p
ogoogo

00 g.cd.(a,b) =p'py?---pr 0000 ~ =min(ay, 5;)

«00000000000000000000 (least common multiple) 00 O ,l.c.m.(a, b)
goobod
00 Lem.(a,b) = piips2---p> 0000 & = max(y, 5;)

|a-b]
oo l.em.(a,b) = ——————
c:m-(a,b) g.c.d.(a,b)

(max(a, #) + min(a, §) = a + B)

00 4200 =2°-3'-5%.7" | 10780 =2%-5".7°
0000 g.c.d.(4200,10780) = 22 - 5 - 7!
0000 l.en.(4200,10780) = 2% - 31 - 52 . 72

Euclid 0 0 0 O (Euclidean algorithm)

O000000000000000000000002000 «00000000 g.c.d.(a,b)
gboobooooobooooboo



8 020 0000

oo
a2b0000e+b000¢0O0O0O0000000000a=0bg+7r (0<r<b—1)
00000g.cd(a,b)=gcd(r)0 (- dda0 b0000 < d0b0r0000)
algorithm
a=>b0000
()0 a=000 000 r1(rp > 0) a=bq +r g.c.d.(a,b) = g.c.d.(b,)
(2)0 b+rD00 OO0 ry(re > 0) b=riq+ 1o g.cd.(byr) = g.c.d.(r1,72)
(3)0 ri=+r 00 ¢000 r3(rs > 0) ri = TroQ3+13 g.c.d.(r1,r2) = g.c.d.(ra,73)
(4)0 ro=+rs00 000 ry(ry > 0) ro = T3qs+T4 g.c.d.(ro,r3) = g.c.d.(r3,r4)
(k)0 rpo+ 1100 @000 rg(ry > 0) Theo = Tk_1qk + Tk
g.cd.(ry_o,m1—1) = g.c.d.(Tk_1,7k)
k+1)0 7y =700 @000 7444 =0 Th—1 = TkQk+1
d=g.cd.(a,b) =g.cd(rp_1,rp) =rx:00000

Example I1.2.1 0 ¢.c.d.(1547,560) 000000
1547 = 560 - 2 + 427
560 = 427-1+ 133
427 = 133 - 3 4 28
133 =28-4+21
28=21-147
21=17-3
g.c.d.(1547,560) = 7

Proposition 11.2.1(0 0)

Proposition 11.2.20 d = g.c.d.(a,b) = Ju, v : integer s.t d = au+ bv
Odddd20000 «Ob000000dOeOd 000000 100000000



2.2. Divisibility(000) 0 Euclid 0 0 00 9

Outline of proof(0 00000 U0 Eucid0000 000)0 EucdidOOODDOODO
goooooog

d:’l”kZT’k,Q—kalquDD kalz’f’k,(g—?”k,qu,l[jmDDDDDDTk,Q.Tk,g,”' O
00000000000dO ¢O0 000000 100000000

Example I11.2.1(00)
7=28—21-1=28—(133—-28-4)-1
=5-28—1-133=5-(427—-133-3) —1-133
=5-427—16-133 =5-427 — 16 - (560 — 427 - 1)
= 21427 — 16 - 560 = 21 - (1547 — 560 - 2) — 16 - 560
= 21-1547 — 58 - 560

000 a,b:00 (integer) D000

a0 b00000O (relatively prime)

&L ged(a,b)=1 (ie. «0 b0 10000000000000)

00 (EulerO ¢ O00O)
0 n:0 00 (natural number) 000 0O
on) Y #{beZ|1<b<n00 ged(bn) =1}
(#0000000000000O0O0ODO)
p(n)0n000n00000000O0OOODOOOO
IO e =#{1) =1, e =#{)=1, o) =#{1,2}=2
o) = #{13} =2 . ¢(5) = #{1,2.3.4 =1, (6) = #{L,5} =2
pO0000000p(p) =+#{1,2,---,p—1}=p—1
p(p™) =p* —p" ' =p"(1 - ;)

(- 10p*0000p*00000000{1-p, 2-p, -+, p*t-p}0p1t0)

00 2-10 (000000000000
000 p*eDODO PPIHO = 0O p**Bla-b



10 020 0000

O @G)0 p¥le , p?p0000 a< B0 = 0 p*|(a+b)
(h)ODOODO0DO00000pe0000 p*b0 = O p||(a + b)0

00220 95000000000000000000O00O000O0O

00 2-30 n00000 (positive odd number) 00 0O
()0 n0 vwO00000000 00000000010 1(1to)0000000
00000 (0O0000On0OO0OO0ODOOOOOOON)
M On0vrO0OODODODOA0200000000000 s*—-#*000000000
00010 I(1to)OOODODOOODOOOOO
()0 9450 20000000000000000O0O0O0O0OO0O0OOO

00240 ()0 p! 00000000 (exactly divide) 00 pO 0O
[n/pl + [n/p?] + [n/p’] +--- (DD D)
0oo0O00o0o0ooo
(b)0 10000 200000000000
10000 300000000000
1000 500000000000
1000 700000000000
1000000000000
()0 Sy(n)OnO0b—0000000000000101000000
0000n 000000002000 n—S(r) 000000000

OO00O0On!lO00pOO00D0OO0O0DOOOOOOODOOODODOOOOO
gogd

00 2-50 d=g.cd.(360,204)0 2000000000
()0 20000000000000000
(b) 0 Euclid 000 0O

Ob2-6000020000000000 EvelidODDO0OO0O0OOO0DOO0ODOODODOO
ob20000 1000000000



2.2. Divisibility(000) 0 Euclid 0 0 00

(a)0 26,18  (b)O 187,34  (c)O 841,160  (d)O 2613, 2171
00 2-7000 2-11(00)

0021200000 (00000000)0000 (polynomia) 00000000
f,g0000
flg €& 300000 st.g=f-h (fO ¢g0OOOO)
g.cd.(f,g)0f0 ¢00000D0D0O0000O0O
0000000000000 0000000000000000
000000000000 0001000 (monic)00000000000
fO04¢00000 €% ged(f,g)=1
Fucid 0000000000000 O0O
(a)0 g.cd.(z* + 22+ 1,22 + 1) =7

(b) O g.ed.(xt —4x® + 62° — 4o+ 1,23 —2? + 2 — 1) =7

()0 (b)DOD0OD0ODOODO0OO fO0g¢g0O0O0O00O0O010000000OO0
(g.cd. =u(z)f(x)+v(z)glx) DO0DOOO00 w(z)Do(z) DO O0O0O)

002-130 f(x)=0000000000
Odf(z)=0000 = dlg.cd.(f(z),f(z))=0000
0000000000000 2*—22"—22+2x+1=0000000000

00 2-14(Gaussian integer)
0 Gauss 0 0 (Gaussian integer) <% o =a + bi (a.b € Z)
ooooZzZzOooooooooogoooo

a, fO0GaussO0OOOOO0OO
O o|fp BN O st.OfB=a-y
0 ged(a,) € o0p00000000000000 GaussOO
000000000 (000000000-100+000000)

GaussUOOOOO EucidOO OO
a+0 (lo]2]8#000D0)




12 020 0000

gDDDDDDDDDDDD GaussUOOO~OOO0O0OO p=a—-p-yO0000
DDDDDDDDD(DDDD GaUSSDDDDDDDDDDDDDDDDDDD)

100008 |l =|§-I-18 < 1A
Oa=p6-v+p (lpl=[8)0000g.cd(a,B) = g.c.d(5,p)
O000000000 EveidOO0O0OOOOOOOOOOO
ogopoogoooogogno

(a) O g.c.d.(5+ 6i,3 — 2i) (b) O g.c.d.(7— 11i,8 — 19)

002-1500000000000200000000000000000
00p0O+10000000000000000
D0000p=c+d*=(c+di)(c—di)00D0 cOdOODDOOOO

W+1=00*+1)0* —b*+1), V=02 +1= -1+
pO (B*+1)0 M -p*+1)00000000000000
pOB?+1=(b+4)(b—i)00000000000O0
00000000000 ¢c+di=ged(pb+4) 0000000
pO W —024+1=(B*=-1)+bi)-((1*-1)-b)000000000000
00000000000 c+di=ged(p,*—-1)+b6)0000000
0 Example 0 122770 20+ 1= (202 +1)(20* — 202+ 1) 000000000
00 20*—202+1=159601000000000
000000 g.cd.(1277,(202 — 1) + 20i) = ¢.c.d.(1277,399 +20;) 0 00000 O
00000 12277 = (399 + 200)(31 — 24) + (—132 + 178i)
00000 399+ 20i = (—132 + 178i)(—1 — i) + (89 + 661)
00000 —132+ 178 = (89 + 661)(24)
0000000g,c,d,(1277,399 + 20i) = 89 + 664 , 12277 = 892 + 662
()0 195 +1=2-132-181-7690 00000 7690 Euclid 000000000
0200000000000
(h)00O0O 38770 15°4+ 100000038770 200000000000
()0D00 387370 2% +1000000387370 200000000000
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2.3 Congruences(0J00)

gd
a=b mod m <L ml(a—b) (ie. (a—b)0mOO0)
O0000«cO0mDOOO0D00O WO DOOO0O0O0ODOOO0

goooo

1.0 ()0 a=a mod m

O@()0 e=b mod m <= b=a mod m

O ()0 a=b mod mOOOb=c¢c mod m= a=c mod m

00 ()0 (i)000000=00000 0000
2.200000bbbuoooobbbdoooobboooobbboooogooooo

gbobobodmubbobbooooobobbooobobobbooooboboboood
mO000000000000Z/mZ0O0O0O0O0Z/mZO

gbooboobouoodoaoon
gbobo1o0gdaoon
gboob20000000

000 (m-1)0000000

UmUdbDoOooogooon

3.0a=b mod m OO c=d mod m

0= (atc¢)=(0bxtd) mod m OO ac=bd mod m
0000Z/mZO0000000000000000000000O0O0O0O0O0O0O0
Z/mZDDDDDDDDDDDDDDDDDDDDD(Commuttivering)DDDDDDD

0 (1-

Oa+b=b+a

1-2)0 (a+b)+c=a+(b+c¢)
1-3)0 40 st. a+0=04+a=a
4)0 Va, 3(—a) st. a+(—a)=(—-a)+a=0

-1 b=b-a

1)
)0
)
)
)0
)0 (a-b)-c=a-(b-0)

0 (
0 (
O (1-
0 (2
0 (2

-2



14 020 0000

00 (23)0 (a+b)-c=a-c+b-c , a-(b+c)=a-b+a-c
O0000000000000000000 (commutative field) 0000000

00 (3-1)0 31 st. a-1=1-a=a

00 (3-2)0Va#0, Ja! st. a-al=at-a=1

4.0dm (d0mDOO00)000000a=b mod m= a=0b mod d
5.0mO 0000000000 (g.cd.(m,n)=1)

O0a=b mod m , a=b mod n = a=b mod m-n

Proposition I11.3.10 Z/mZ 00000
Oe0000000b=a"'(Gie. a-b=a-a =1 mod m)000

0 < g.cd.(a,m)=1

proof ] — 000
0000 ged(a,m)=d>10000
Oab—-10mO00 = ab—-10d000 = 10d000 (O00O)
~ggg
gcd(a,m)=100000wuwa+vm=1000 v,o000 (u,v € Z)0
b=uwO0O0O0O0Oab—-1=—-vmUO0O0Oab=1 mod mOIOOD

Remark O g.cd.(a,m)=1, ab=1 mod mOOO0O0OOe "0V 000000000

Example 11.3.10 84100000 160000 1601000000
00 2-6(c) 000
0000 841 =160-5 + 41
0000 160 = 41 -3 4 37
0000 41=37-1+4
000037=4-9+1
00004=1-4+40
000
0000 1=37—4-9=237—(41-37-1)-9
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o000 =37-10—41-9=(160—41-3)-10—41-9

0000 =160-10—41-39=160-10— (841 —160-5) -39
Ooo0d =160-205—841-39

O00000160-205=1 mod 8410000016071 =205 mod 841

Corollary 1 of Proposition I11.3.10 pO0000000Z/pZ0 0000000 00O
000000000000 Z/pZ0000 (commutative field) 0000000 F,000
OO0000p0000DOO

Corollary 2 of Proposition I1.3.10 0<a,b<mO00000000O0OO
ar =b mod m

gooooogo
(1)0 g.cd.(a,m)=10000000 20000000000 20 x=290+mnO0

ooood
(2)0 g.ed(a,m)=d>10000dp000000000000

a=ad , b=bd , m=md
O00000g.cd.(d/,m)=10000

ar=b modm < dz ="V modm

Corollary 3 of Proposition I1.3.1
a=b modm , ¢c=d modm , g.cd.(¢c,;m)=1(= gecd(dm)=1)00000
ac™t =bd™' mod m

gboooogog

proof
cd(ac™ —bd™') = ad —bc =0 modmOO00cd(ac™t —bd™" )OO mDOODOO0OO0O
g.cd(cd,m)=1000(ac™ —bd™ O mOOO000ac =bd™ modmOO00ODO0O



16 020 0000

Proposition I1.3.2(Fermat 0 000 )0 pO00000«000000000O00O0O
a? =a mod p

JoddobobobobbeUpioonbobO
a’'=1 mod p

gbooooo

proof
p fa(a0 pO0O0OD)00O0

0Oa, la, 2:a, (p—1)-a
0000000000000 D0OD0DDOD00004:-a=j-a modp (0L4,7<p—-1)000
O00G—j)-a0p0000000e0 p00000O0O00O0DOODOOG—y)0pO0O0OO
b0, <p—1000:=5y0000000000I
{1-a,2-a, 3-a, (p—1)-a}00000000p000000{L, 2,3, (p—1)}00
goooooooon

(1-a)-(2-a)-(3-a)---((p—1)-a) = (p—1)! mod p

(p—1!-a” = (p—1) modp
(p—1D!'O0pO000000OOOOOO

a’'=1 mod p
000000000 «O00D000d=a modp0O0O0O0O0O0OOeOpOOOO0O00O
gooooo

Corollary of Proposition 11.3.20 p0 000000 pO00O0O000O (p fa)0O000

ooo

n=m modp—1
oooaoo

a” =a™ mod p
oo0oodoo

proof D n=m mod p—100000000n=m+c(p—1)00000

a®=am- (e =a™ modp (.a’"'=1 modp)
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Example 11.3.20 2100000 700000000000 100000000 (2100000007 7
O000o0ooOogon)

p=7000001000000 < (7 —1) = 166666 ---4 d.e. 1000000 = 6 x 166666 + 4
1000000 =4 mod (7 — 1) 0 00 2109000 =94 =92 mod 7

Proposition 11.3.3(0 0 0 0 O O O =Chinese Remainder Theorem)
gooooog

z =a; mod my
T = ay mod mao

0000
i #3000 ged(m,m;) = (00000 mO0m00000)000000M =
mymsy---m, 0000000000000000

proof

MOODoOODoOooDoOOooOoOooOooog

Z02"020000000
oboobD.00000

=0 mod m;

r=1 —zx

U0mU0000000000000000 5000

r=2'—2"=0 mod M = myms---m,

gooodg

j=1

1#0000M0m;0000000000M;N;=1 modm,;000

= a;M;N; = a; mod m;

Corollary of Proposition 11.3.3
mOn00000 (g.cd(m,n)=1) = p(mn) = ¢(m)p(n)



18 020 0000

proof
00(mn—1)0mr000000000000000 ¢(mn)
0<vYj<(mn—1)00 540;0mO00000000
pUs0n000000000
Proposition 11.3.30 000 (ji,4»)0 10 1000000
(o031 st. j=j; modmOO0O0O j=j, modn)
0on

JUmpnd00000 <=0 U0mb00000000 32000000
gogogo
e(mn)=(mnO000000 j000)
=(mO00000 54000)x (pO000O0OOO 5000)

= p(m)p(n)

00 Corollary OO0 00000000000 n=p'ps?---pr00000

@(n) = o(pi'py® - - per)

=pi'(1 —1])1)1732(11 - 172) : plﬁ”(l pj)
:n<1_p1)(1_plz> (1_171’”) 1
90(”):n(l—p*l)(l—p:)‘“(l—pj)znx ]}‘_{1 (1—;))
p:00
1 1 1 1
00(12)=12-(1- ) (1=3) =4 , p100)=100-(1—5)- (1) =40

Proposition 11.3.4(0 0)

Proposition I1.3.5(Euler) 0 « 0 mO0O (g.c.d.(a,m)=1)000000
a?™ =1 mod m

obooobo
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proof

()O0m=p*(p: 00)0000e0000000000O0O0O
00 a=10000a%"™ =a#®) =¢»' =1 mod p=m
00 a=k000000000000000 a?®) =" *"" =1 mod p*
00 a=k+100000 a0 = @' = @' = = (@471

1

000000000000« ? ' =1+b-p*0000
000 a?®™) = (14b-p*)P = ,Co 4 ,C1b - pF + ,Co(b-p*)? + - ,C,p(b - p*)P
000000000 1000000000000y 000000000
000 a?®™) = Cy =1 mod pht!

()0 m=pps2-..p» 0000000400000
000 a?m = ge@ie?)¢r) =1 mod p® (- a®®) =1 mod p™)
00000000000 s000
000 @™ =1 mod m = p{*ps>-- - por

Dooooo

Corollary of Proposition I1.3.5
a0 mO0000 (ged.(a,m)=1)000n0e(m) 00000002 000000

nl

TLEa

a mod m

gooood

proof 0 n=n'+c-pm) 0000000

a” =a" - (a“’(m))c =a" modm (. a*™ =1 mod m)

Remark

«0mOD0000000000a¢?™ =1 modmOOO00OOe*=1 modmOO00DO0O
Jddd0000000

Proposition I1.3.5(Euler) 000000 m =pi'ps?---p- 000020000

e, e@?), -+, (i) D00000000006¢* =1 modmO OO0
O0m=105=3570¢0 mD0OO00D000000000¢(3) =2, ¢(5) =4, ¢(7) =6

000000 120000062 =1 mod 1050 (p(105) =2 -4 -6 = 48)



20 020 0000

Example 11.3.3 0 2'000000 =9 mod 77
go1
=711, ,p(T) =6, p(11)=10 , 60 100000000 30
230 =1 mod 77 , 1000000 = 30 - 33333 + 10
21000000 — (30)33333 . 910 — 910 — 1024 = 7713 + 23 = 23 mod 77
oo 2
21000000 =7 mod 7
0 1000000 = (7 — 1) - 166666 + 4 0O 002190000 =24 — 16 =2 mod 7
91000000 —7 1110d 11
7 1000000 = (11 — 1) - 100000 + 0 [ 0 0 21009000 = 90 = | 0 11
x =200 =9 mod7,2=1 mod 11, 000000000000

117'=2 mod 7 , 77'=8 mod 11000
0 ¢ = 21000000 =9.9.114+1-8-7=100=23 mod 77

gooobodg

m,n0000000b0 =7 modm
nOd20000000n=ng+n1-24+n2-224+mng-22 4+ 4 ny_q-2F1
set set

by =b* modm , b; = (bj_1)* mod m (j =2)
hn = bno—l-m-2+n2-22+n3v23+"'+nk,1-2k_1
= b0 (B2)m - ((B7)7)"2 - (((02)2) )
= 0" (by)™ - (bg)™ -+ (bg—1)™1 mod m
()0 ne=00000a21 modm , no=10000aZb modm
MO n=00000a=a modm , ny=10000aZ0a-b mod m
2)0ny,=00000aEa modm , no=10000aZa-by modm

set

(k1)0 ngy=00000aZa modm , np1=10000a=a-b; modm
0000000000000

b =a mod m



2.3. Congruences(0 0 O)

Proposition 11.3.6(0 0)

Proposition I1.3.70 Y ¢(d) =n
din

proof 0 > o(d)= f(n)0 00O
In
m O néDDDDDDDDDDf(m~n):f(m)-f(n)DDDDDD

0000000d|(m-n) 2 d-do=d, di|m, do|n
000 o(d) = ¢(dy - dg) = @(dy) - p(dy)
000 f(m-n)= Z o(d)

= > ld) p(dy)

di-da|(mm)

= > o(di) - p(dy)

dllm
da|n

SRR

= f(m) - f(n)
p0000000f(p*) = p°
f(0%) = (1) + o) +o@*) + -+ (p®)
=1+(p-1D)+@ —p + -+ @ —p*")
=p°
n=pi-py?---p(00000)000O0

fn)=fp1") - f(032) - fprr) = pi* - p® - pir =mn

b 3-10gonooogan

()0 3x =4 mod 7 (d) O 27z =25 mod 256
(b)d 3z =4 mod 12 (e) O 27z =72 mod 900
(¢)0 92 =12 mod 21 (f) O 103z = 612 mod 676

21

gb 320000000 16e00000O0UO0O000O01I0OOOOO0O0ODOODOO0O0On

gooboooon



22 020 0000

gb3-3u00dnb20bbbbuoogi12zo0bbouooobbbliobbouoodn
gboboboooobbooooooobon

00340.,0100000000000000000000
3n < 3|(000000D0)
9n < 9O(0ODODODODD)

0035030/ —n) 00000000000

00 3-60 8ftx9t 00 000000000000 7200000000000008%100
0000000000000 0000000 $20.6? OO00D0DO0DO0000000000
gbbboodgboboboooobn

00 3-70p020000000000m=p*0000m=2-p*000000000
gooboboodgd

2=1 modm = zxz=1 modm 0000 z=-1 modm

0038000 WilsonOOOOOOOOO

p000 = (p—-1)!=-1 modp
goodoooooobobod

n000000 = (n—-1)!#—-1 modn

gb3-90upnobugoobboooddbbboooobbogn

=4 mod?7
=4 mod?9
=4 mod 11

00 3-1o0U000U0o0uououoouououoouoooooo
z=1 mod 11

=2 mod 12
z =3 mod 13
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b 3-11ugggbbobugoobbogogbbbuoodon

r=2 mod 3 19 431
= jat
=3 mod 5 o © o0 { 192 = 103 mod 900

4 mod 11 (P)HQ @ =8T mod 127 10z = 511 mod 841
Tr = mo €Tr = mo

5 416 =91 mod 255

€Tr = mo

(a)O

00312090 1000007000110000300030000 200090000
sgubglobooooroobnooool1bdebbbydbOb00yb 20000
goboboooobobooon

00 3-130 (00)

00 3-140 38 =? mod 103 (000000000 O0O)
00 3-15000 3-160 (0 0)

00 3-170 ©(90) , ©(91), ©(92), --- , »(100)00 000

00 3-180 ¢(n) £ 12000 n000OD0OOOO
gbbboodgbobboooobbobodan

003190 ,0000000000000000000000
n—1>¢n)>n—-ns = n020000000000000

gb3-2000000b0ouoogn

p(m)

m=8 , m=2*, gecd(a,m)=1 = a 2

=1 modm

00 3-210 m = 7785562197230017200 = 2*-33.52.7-11-13-19-31-37-41-61-73- 181
00000000000000

(a)0 2=6647%2 mod mOOOO00O0O0O0000 200000

()0 eOmOODODODD mOODODOO0000O00O0OOOO0O

T —1

a® =a mod m

gboosocobboogdobobtu.00bbbuooonoobooog



24 020 0000

00 3-22000000 Proposition IL3.7000000000r0000d00000Z/nZ
0o0000 $,0000000000
SF:&~Z\j:QL~~J—1}

(a)0 S;0 ¢(d)00 S,000000 (00)x000000000000020 8,000
00000s,0000000.~,00000000000000000000
00n=1200008; ={0}, S, ={0,6}, S5 ={0,4,8} , S, {0,3,6,9}

S6=10,2,4,6,8,10} , S12=10,1,2,3,4,5,6,7,8,9,10, 11}

0000000000000 S,00000000

()0 Z/nZOODO 200010000 5,0000000000000
(00000000000 5000 S,0@R0 S0mO S,0MO S00--0110 Sy
0ooooon)
(a) 0 (b) OO Proposition 11.3.70 000000

0gd 3-23
(a)DDDDDDDD(DDDDDDDD)DDDDD
HL
pﬂDl_zlJ

000000000000000
()0 (a)00O000

y !

p:00 p

gbboboogobbbuoogon

(@Dhmfﬁﬁzlmmmmmﬁ%mnyamDDDDDDDDDDD

Jj—00 nj

DDDhmM:ODDDDD{nj}D n;, —ooUUOOUOOOOOOOO
)= Ny

OO0 3240 NOOOODOOooooooboboboooboooobobooooobobooboo
oboobobooboobboobooobuoobnObO0OO0ODbOO0OONDDODDO
ooooboobooobooobboob NODOODDOOODOODOoOoDbDDbOoo 300
0000000000000 000000000000000(@OUOo02000000
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00000000000000000)

(a) 0 p1,pes--- ,p, 000000000000 000¢YNOOOOOOYNOOOOOO
000{p}000000000000000NO000000000000000000
0000000000000 NOOOOOOOO00

()0 ()00000000000400000000000000000000000
000000000000 00000000k-10000000000000000C0
oooood

24 0O00O0OO0OOO

Proposition 11.4.1 000000 0000000 nO0O0O00O0 —-100b—-10000
Ooooogw 4+ 24+...+0¥+b+10000

proof 1000000000000 OOOOOO
02000 (b-00000000)

V' - 1000000000 2,0000 (b—1)0000000000000 ! +
V2440404 100b0-0000 (111---111), 0000000 (b—1)000000
(b—=1)b-1)0b—-1)---b-1)0b-1)0b-1)),=b"—-10000

Corollary of Proposition I1.4.1 000000 0000000 mOnO0OO0O0O
pmn 1 = (bm_l)(bm(n—1)+bm(n—2)++62m+bm+1)
Oooon

proof ] Proposition [1.4.1 0000000 0000000 O0OO

002%-102°-1=3102"-1=1270000000



26 020 0000

Proposition I1.4.20 00 mOO0O0O0O000«O cOOOOODOODO

=1 modm, b=1 mod m, d0 g.cd(a,c) = b*=1 modm

proof EucidDUO 0000000 0d=we+0oc00000000000w0 o000
goboobboogbodgouoooobbbbiddtde>0,v=20000000000
0000 =1 modmOO000 w000 =1 mdmOO000O (—v)D0O0ODODOOO
O000o000p =t =1 mod mOOOO0O0

Proposition I11.4.30 pO " — 1000000000 O0O0O0O0O0O00OOOOOOOO0O
()0 n0000000d00000pb—1
(i)O0p=1 mod nO0 00 p>20 n00000000p=1 mod 2n

proofJ " =1 mod pO 00 OFermat0 00000 *~! =1 mod pO 0 O OProposition

[1.42000d=g.cd.(n,p—1)00000 =1 mod p
O000d<nO0000n000004d00000pI¢-10000 ()O00D0O0O0O0O
d=n00000d0p—-10000000d|(p—1)0p=1 mod d=n0
O000p0n0000000000O0OR|(p—1)00000C0O0O 2n|(p—1)0OD00OO

p=1 mod 2n

OO0 PropositionU 0 OO O00OOO0O0OOOOOOOODOOODOOOOO

Example

1.021 - 1=2047000000000p|(2" —1)0 00 00 Proposition 11.4.30 00
p=1 mod 220p=23,67,89,--- 000000000000000000
(00042047=45.---0000000000000000)0
2047=23-890000000
00028 -1=819100000000000000000002"-1000000
Mersenne [0 [0 0000

2.0 32-1=5314400 00000000 Proposition 1143000000000 0
31 _1,32-1,33-1,30-1,3-1=(3*-1)(3*+1)000 0000000000
0000000000002%-5-7-1300000531440/(24-5-7-13) =73(00)
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gboooodd 27

000000003 -1(d01200000)000000000000000
O0O00073=1 mod 120000

2% —1=2343597383670 0000000000029 -1(d=1,570000000
00000000 31,127000000 (2% —1)/(31-127) = 87273910
Proposition 11430 000000000 =1 mod 70000000 71,211,281, ---
00000000000048727391=2954.--- 00 00000000000000
D000000000000000 8727391 =71-12292100000

V122921 =350.--- 0000000000000000000000122921000
00000000002% —1=234359738367 =31-71-127-1229210 000000
000 (122921 = 70 - 1756 + 1)

Remark 0 80000000 Example 30000000

2% 0000000022 =67108864(80)0 2°=512000000000

235 = 512 (67108 - 1000 + 864) = 34359296 - 1000 + 442368 = 34359738368
00002% -1031-127=3937000000000343597380 39370000

4
33”KB]:8@75D[M]DDD34%%38=$BT8H7+1%9

DDDDDDDD[
3937

oooo
34359738367 (3937 - 8727 + 1539) - 1000 + 367

3937 3937
1539367
3937

= 8727000 +

= 8727391
oooo

4-10 000000000

'+ 1=0b+1)0" =" 24+ 2= b+ 1)
0000002000000001000000000000000000000
\b-O0O0oooood

4-20 2" -100000000-,000000000000
gbobo2r+100000000n0 2000000000000
2r—-100000000 Mersenne O OO ooooog 3,7,31,127,---
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HRN

HEN

00

HRN

0o

HEN

00

HRN

00

020 0000

"+ 100000000 Fermat 00 0000000000 3,5,17,257, - -

4-30m>20000mUO00000«0 cOOOOOOODOODOODOODOOOO

b*=—1 mod m, b*=+1 mod m, d0 g.c.d(a,c)
—

bl=-1 modmOO0O0 a/dO0ODO

4-400000000000
pOb"+10000000000000O00O0O0OOOODOO
()0 n0n/d000000000000000dO00000p[H +1
(i) 0 p=1 mod 2n

4-50m=2¥+1=167772170 0000000000000
()0 mO0000 Fermat OO OO OOOO
(h)OOoOOoDOoOO =1 mod 48000000000

()0 mO00D000D00O

4-603%-103*-1000000000
4-7052-1000000000

4-80 10°-1010°-10108—-1000000000O
4-902¥ -1022'-1000000000

4-100 2% —102% —102° 1000000000

4-110 ()0 0 10000000000d=g.c.d.(m,n)00000
ged(am—1,a"—1)=¢¢— 1000000000
(byo(oo)
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25 0U0O0ODOOORSAOO

00000000000000 00 (plain text) D00 0000 (encryption 00O

enciphering) 00000 000 (cipher text) 000000000000 0O000O0OO

00000 000 (decryption 000 deciphering) 0000000000 OCODOOO
oooboboboooobobob kO0obO0obUobbobbokbDOobDbOOobOobOobo

ooboobobooo/oboboooboooboboboooobooog
POROODODOOOOOODOODO
col0bo0obooboobooboboo
00000000 fO000O f'O00000O0OOOOO

pLlocllp

00000000000000 fO00000000OO0O f'O000000000O000O0
00000 f0 f'0000000000O00OOfO0000OOOf 00000000

0000000000000 (public key cryptosystem) 000000 3000000
oood

Oo00oooooooobboobobobooooooooboooobbobo RSAOOOO

00 (RSA cryptosystem) D OO ORSAO 300000 Rivest, Shamir, Adleman O O
goououououoouood

gbooboooon
00000 (00000000000 oooooooooooo)ooooof
00000 (000000000000000000000000O0O0)O ft

RSAOOOOOO

p0 ¢ 00000020000 ((O0C0O00O 10000000000 0ODDOOODO)
n=pq , ¢n)=¢pgd=rpP-1)-1)=n+1-(p+q

eDp(n) 000000

d=e ' modp(n) (ie. de=1 mod ¢(n))
O0PO0O(ODOO0)DnO0O0DODOODOO0OODOOOOOODOOODOOOOO
goobogd



30 020 0000

000000 (ne) 00 (pgen),d00000000000000)
000000 (n,d)

0000000 R000000000000000000r0e000000O0OOp,q,e(n),d
O000000ooooooooogd (n,d) 00000000000 OODOOODOODOO

gooobodg
pOOOOOOOOO (0LPL
cooooooooog (oL

000
C=f(P)=P° modn (0<f(P)<n—1)
000
fHC)=C% modn (0 fH(C)<n—1)

godooodooooon
Pl —p=pPPet—1)=0 modp
O0000oooooorPOp000d000OOOOOPOpddOOOODDOOOOde—10

p—1000000 Fermat 000 000 (Corollary of Proposition 11.3.2) 0 0 Pde~1—1 =0
mod pO0O00O0OO0O0OO0O
gogd
Pl — P =P(P%*1-1)=0 modq
goooooooooobobbbogsodan
Pl — p=pP(PPl—1)=0 modn=pq
00000 fY0)=C'=P¥*=P modn
goobobobooodad

00

gcd(Pn)=100000de=1 mod ¢(n)0 Euler 00000 (Corollary of Propo-
sition 11.3.5) 000000
fYC)=P* =P modn
goooooo
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gboobboggoboodagdn
goNOODOooooooooo
(000000000 2600000000000000 520

0000000000000000000)
ONDOOOOODOO0ON-1000000000
ON<n<N (I=k+1000000)0000
0000000000 0000000k0000000000O0 NOOOOOO
0kO000O0(EN—1<n—-1)0000
0f0000000000000-,0000000000000001700NOO
0MO0O00/00000000000000000
000000000000000000

goboobbooobbbooobooobbooobbboddp,boobog
gbbboooobbbuoooobbbuoooobboagn

Example
1.0p=2,q=13 , n=2-13=26 , ¢(2-13)=(2-1)(13-1) =12
e=5,d=5"'=5 mod 12
N=26, 0A)025(Z) 0000000 k=1l=1
000 000="KOBE'ODOOO=10,14,14
f(10)=10°=4, f(14) =14° =14, f(1) = 1° =1, f(4) = 4° = 10 mod 26
00 0="EOBK”
000 0000="EOBK”0O 00O =4,14,1,10
Y4 =42=10, Y (14) =145 =14, f 1 (1) =1°=1, f1(10) = 10° = 4
mod 26

00 0="KOBE”

2.0p=3,g=11 , n=3-11=33 , p(3-13) = (3— 1)(11 — 1) =20
e=T7,d=7"'=3 mod 20
N =30, 0(A)025(2),26()27(,),28(.),29(7) 0000000 k=1,1=2



32 020 0000

000 000="PRIME NUMBER”0O O 00O =15,17,8,12,4,26,13,20,12,1,4,17

OO0 mod330 0000

J(15) = 157 = 27(A,), f(17) = 177 = 8(AI), f(8) = & = 2(AC)

J(12) = 127 = 12(AM), f(4) = 47 = 16(AQ), /(26) = 267 = 5(AF)
f(13)= T = 7(AH), £(20) = 207 = 26(A0), £(12) = 12(AM), (1) = 1(AB)
F(4) = 47 = 16(AQ), £(17) = 8(AI)

000="AAIACAMAQAFAHA_AMABAQAT"
000 0000="AATACAMAQAFAHA_ AMABAQAT”
00=27,82,12,16,5,7,26,12,1,16,8

FH27) =278 = 15(P), f1(8) = 88 = 17(R), f~1(2) = 23 = §(I)
1~ 1(12) P =12(M), f7H(16) = 16° = 4(E), f1(5) = 5° = 26(u)
U == 13(N),f—1(26) =263 = 20(U), f~1(12) = 12(M)
f711) =1(B), f7H(16) = 4(E), f1(8) = 17(R

000 ="PRIME_NUMBER”

3.0p=23,¢=89 , n=23-89=2047 , ©(23-89) = (23 —1)(89 — 1) = 1936
e=179 , d=179"" =411 mod 1936
N =40 , 0(A)025(7),26(1),27(.),28(?),29($),30(0)0 39(9) 00000 O 0
k=2,1=3
000 00 0="SEND_$7500”
00 =18-40 + 4 = 724(SE), 13 - 40 + 3 = 523(ND), 26 - 40 4 29 = 1069(_$),
3740 + 35 = 1515(75), 30 - 40 + 30 = 1230(00)
£(724) = 72417 = 1906 = 1 - 40% + 7 - 40 4 26(BH,)
f(523) = 1072 = 0 - 40% + 26 - 40 + 32(A.2)
f(1069) = 802 = 0 - 40% + 20 - 40 + 2(AUC)
f(1515) = 364 = 0- 402 + 9 - 40 + 4(AJE)
f(1230) = 710 = 0 - 40 + 17 - 40 4+ 30(AR0)
000 ="BH,A_ 2AUCAJEARO”
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Remark

D0000000000dOde0 p(p-q)=(p-1)(¢-1)0000000000000
op-q) 00000 p—10¢—-1000000 Lem.(p—1,¢g—1)00000000

0000000 Example 10 ¢(p-q) =lem.(p—1,¢q—1)000.

Example 200 2000000 10000000000e=7,d=30000000000
e=11,d=110000e=1,d=10000000(0000000). e=13, d=17
O000e=3,d=700000000e=17,d=130000e=7,d=30000
O000e=19,d=190000e¢=9,d=900000000000

Example 300 ¢(23-89) =1936 00000 Lem.(22,88) =8800 00000000
O00000e=179, d=41100000e=3, d=5900000000000

00 5-10 Example 100000
() O”HYOGO” 0000000 (0O”LUOCO” )
(h)OOOoODOOoOOoOoOooooooooooooo
(c)ODO0OD0O EANXI” OOOOOOO

00 5-20 Example 200000
() O”"KYOTO FU” OD0OD0DOOO0O (0O0”AKASAUANAUAFAOA,” )
(h)OOOODODOOOOoOoOooooooooooo
(c)0000 "AKAAAHAIAC” OODOOOO

00 5-30000 BASICOOOPASCALOOODOUOOOODODOOOOOOODOExample
130000000000 oboobooaogobbogn



