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第2章 整数の話

2.0 素数の7つの不思議 (朝日新聞 2004/09/14夕刊より)

話題 1 (長い研究の歴史と今も残る難問)

・　 Fermatの最終定理 (Fermat予想)

「xn + yn = znは n >= 3の時，非自明な (どれも 0ではない)整数解は存在しない」

の決着=証明に 350年以上を要した．

・　双子素数予想

「差が 2である素数の組は無限にある」

は未解決．

・　Goldbach予想

「2より大きなすべての偶数は 2つの素数の和で表わせる」

は未解決．

話題 2 (旧石器時代から素数は知られていた？)

コンゴのイシャンゴ遺跡から見つかった骨には 3列にわたって数字が刻み込まれている

が，その 1列には

　　　 11,13,17,19

と素数ばかり並んでいる．また，全部で 16個の数字のうち 10個が素数

(2万年前の遺跡でメソポタミア文明より 1万年以上前)

話題 3 (まだまだ遠いRiemann予想の解決)

Riemann予想

「Riemannのゼータ関数
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のゼロ点は自明なゼロ点 (負の偶数)を除けばすべてRe(s) =
1

2
のところにある」

の解決はまだまだ時間を要しそう．

話題 4 (自然数の中に素数はどれくらいある？=素数分布)

π(x) = x以下の素数の個数

π(10) = 4 , π(100) = 25 , π(1000) = 168

π(10000) = 1229 , π(4× 1022) = 7.83964159847056303858× 1020

π(x) ∼ x

log x
( lim
x→∞

π(x)
x

log x

= 1)

話題 5 (これまでに見つかった最大の素数)

224036583 − 1 : 723万 5733桁の素数

2n − 1の形の数をメルセンヌ (Mersenne)数,それが素数である時はメルセンヌ素数

メルセンヌ数は素数かどうか判定しやすい．

一般に大きな数が素数かどうか判定する事より，大きな数の素因数分解はずっと難しい．

話題 6 (10億桁の素数を見つけると 3千万円の賞金)

大きな素数は暗号に利用される．

より安全な暗号のためにはより大きな素数の発見が有用．

話題 7 (素数は数学の原子)

素数について調べる事は手触り感覚で味わえるので，プロでなくても可能．

数学のプロにとっても奥が深い．数学のいろんなところに広がりをもつ．

参考書

[1]　Neal Koblitz, A Course in Number Theory and Cryptography (second edition),Springer,1994

[2]　笠原正雄,境隆一,「暗号　—ネットワーク社会の安全を守る鍵—」,共立出版, 2002

[3]　一松 信,「暗号の数理　— 作り方と解読の原理—」, 講談社 BLUE BACKS, 1980

[4]　小川　洋子,「博士の愛した数式」, 新潮社, 2003

以下の章では，[1]の第 1章にしたがって，話をすすめていく．
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2.1 b−進法
．10進法

(357.062 · · · )10 = 3 · 102 + 5 · 101 + 7 · 100 + 0 · 10−1 + 6 · 10−2 + 2 · 10−3 + · · ·
．b−進法

(dk−1dk−2 · · · d0.d−1d−2 · · · )b = dk−1·bk−1+dk−2·bk−2+· · ·+d0·b0+d−1·b−1+d−2·b−2+· · ·
b : base(基数)　　　 di : digit(数字)

2進法 (binary system)　　　 bit: binary digitを縮めた言い方　 0 or 1

11 <= b <= 26の時は 0～25までの数字にA～Zを割り当てる．あるいは

11 <= b <= 36の時は 0～9まではそのまま用い，10～35の数字にA～Zを割り当てる．

コンピュータで 16進法は

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A(10) , B(11) , C(12) , D(13) , E(14) , F(15)

を用いる．

Example II.1.1　 (a) (11001001)2 = 1 · 27 + 1 · 26 + 1 · 23 + 1 = 128 + 64 + 8 + 1 = 201

(b) (BAD)26 = 1 · 262 + 0 · 261 + 3 · 260 = 676 + 3 = 679

(B.AD)26 = 1 · 260 + 0 · 26−1 + 3 · 26−2 = 1 + 3
676

Example II.1.2　 160と 199を 7進法で表わし，7進法で掛け算せよ．

7 ) 160 · · · 6

7 ) 22 · · · 1

7 ) 3 · · · 3

0

7 ) 199 · · · 3

7 ) 28 · · · 0

7 ) 4 · · · 4

0

(316)7

(403)7

(1254)7

(16030)7

(161554)7

160 = (316)7 199 = (403)7 (316)7 × (403)7 = (161554)7

Example II.1.3

(11001001)2÷ (100111)2 = (101)2 +
(110)2

(100111)2
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101

100111 ) 11001001

100111

101101

100111

110

Example II.1.4　 106を 2進法，7進法，26進法で表わせ．

106 = (11110100001001000000)2 = (11333311)7 = (CEXHO)26

26 ) 1000000 · · · 14(O)

26 ) 38461 · · · 7(H)

26 ) 1479 · · · 23(X)

26 ) 56 · · · 4(E)

26 ) 2 · · · 2(C)

0

Example II.1.5　 π = 3.1415926 · · · を 2進法で小数点以下 15桁 (7桁)まで表わせ．ま

た，26進法で小数点以下 3桁まで表わせ．

3 = (11)2

0.1415926 · · · = d−1 · 2−1 + d−2 · 2−2 + d−3 · 2−3 + · · ·
× 2 0.2831852 · · · = d−1 + d−2 · 2−1 + d−3 · 2−2 + · · · 　　より　 d−1 = 0

× 2 0.5663704 · · · = d−2 + d−3 · 2−1 + d−4 · 2−2 + · · · 　　より　 d−2 = 0

× 2 1.1327408 · · · = d−3 + d−4 · 2−1 + d−5 · 2−2 + · · · 　　より　 d−3 = 1

1を引いて× 2 0.2654816 · · · = d−4 + d−5 · 2−1 + d−6 · 2−2 + · · · 　　より　 d−4 = 0

× 2 0.5309632 · · · = d−5 + d−6 · 2−1 + d−7 · 2−2 + · · · 　　より　 d−5 = 0

× 2 1.0619264 · · · = d−6 + d−7 · 2−1 + d−8 · 2−2 + · · · 　　より　 d−6 = 1

1を引いて× 2 0.1238528 · · · = d−7 + d−8 · 2−1 + d−9 · 2−2 + · · · 　　より　 d−7 = 0

以上より　 π = 3.1415926 · · · = (11.0010010 · · · )2

3 = (D)26

0.1415926 · · · = d−1 · 26−1 + d−2 · 26−2 + d−3 · 26−3 + · · ·
× 26 3.6814076 · · · = d−1 + d−2 · 26−1 + d−3 · 26−2 + · · · 　　より　 d−1 = 3 = (D)26

3を引いて× 26 17.716597 · · · = d−2 + d−3 · 26−1 + · · · 　　より　 d−2 = 17 = (R)26
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17を引いて× 26 18.6315227 · · · = d−3 +d−4 · 26−1 + · · · 　　より　 d−3 = 18 = (S)26

以上より　 π = 3.1415926 · · · = (D.DRS · · · )26

問題 1-1　 (212)3 × (122)3 =?

問題 1-2　 (40122)7 ÷ (126)7 =?

問題 1-3　 (101101)2 × (11001)2 =?

　　　 (10011001)2 ÷ (1011)2 =?

問題 1-4　 (YES)26 × (NO)26 =?

　　　 (JQVXHJ)26 ÷ (WE)26 =?

問題 1-5　 e = 2.7182818 · · · を 2進法で小数点以下 15桁まで表わせ．また，26進法で小

数点以下 3桁まで表わせ．

問題 1-6　
c

d
を b−進法で表わす時，周期 f の純循環小数となるための必要十分条件は

bf − 1が dの倍数になっていることである．このことを示せ．

問題 1-7　 (a)　 16進法の数字を 0～9,10(A),11(B),12(C),13(D),14(E),15(F)で表わすと

き，(131B6C3)16 ÷ (1A2F)16 =?

(b)　 2進法から 16進法へ変換する方法を説明せよ．また，16進法から 2進法へ変換す

る方法を説明せよ.

問題 1-8～問題 1-16　省略
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2.2 Divisibility(整除性)とEuclidの互除法

定義　 a, b:整数 (integer)とする．

a|b def⇐⇒ ∃d :整数　 s.t.　 b = ad

このとき，「aは bを割り切る」，「aは bの約数 (diviser)である」，「bは aの倍数 (multiple)

である」という．

真の約数 (proper diviser)：自分自身以外の約数

非自明な約数 (non-trivial diviser)：自分自身と 1以外の約数

素数 (prime number)：1より大きな整数で，1と自分自身以外に正の約数をもたない

もの

合成数 (composite number)：少なくとも 1つの非日自明な約数を持つ整数

pを素数とする．

pα‖b def⇐⇒ pα|b　かつ　 pα+1 6 |b

Divisibilityの基本的性質

1.　 a|b かつ ∀c :整数　 =⇒　 a|bc
2.　 a|b かつ b|c　 =⇒　 a|c
3.　 a|b かつ a|c　 =⇒　 a|(b± c)

算術の基本定理 (The Fundamental Theorem of Arithmetic)

任意の自然数は (因子の順序を無視すれば)一通りに素因数分解が出来る．小さい素数

の順番に書くのが通常である．(例　 4200 = 23 · 3 · 52 · 7)

Divisibilityの基本的性質 (続き)

4.　 p :素数　,　 a|bc =⇒　 a|b　または　 p|c
5.　m|a　,　 n|a　かつ　mと nが共通の約数 (公約数)をもたない　 =⇒　mn|a
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自然数 nの約数は何通りあるか？

　 n = pα1
1 pα2

2 · · · pαr
r (素因数分解)

とすると，nの任意の約数 dは

　 d = pβ1
1 pβ2

2 · · · pβr
r (0 <= βi <= αi)

の形である．よって，n = pα1
1 pα2

2 · · · pαr
r 　の約数の個数は

　 (α1 + 1)(α2 + 1) · · · (αr + 1)

である．(例　 4200 = 23 · 3 · 52 · 7　の約数の個数は　 (3+1)(1+1)(2+1)(1+1) = 48個)

定義　 0 と異なる 2 つの整数 a と b について，a と b の両方を割り切る最大の整数を

最大公約数 (greatest common diviser)といい，g.c.d.(a, b)と書く．

g.c.d.(a, b)：aと bを割り切り，aと bの任意の公約数によって割り切られる唯一つの正

の数

　　 a = pα1
1 pα2

2 · · · pαr
r

　　 b = pβ1
1 pβ2

2 · · · pβr
r

とすると，

　　 g.c.d.(a, b) = pγ1
1 pγ2

2 · · · pγr
r ここで， γi = min(αi, βi)

aとbの両方が割り切る最小整数を最小公倍数 (least common multiple)といい,l.c.m.(a, b)

と書く．

　　 l.c.m.(a, b) = pδ1
1 pδ2

2 · · · pδr
r ここで， δi = max(αi, βi)

　　 l.c.m.(a, b) =
|a · b|

g.c.d.(a, b)
(max(α, β) + min(α, β) = α + β)

例　 4200 = 23 · 31 · 52 · 71 , 10780 = 22 · 51 · 72

　　　　 g.c.d.(4200, 10780) = 22 · 51 · 71

　　　　 l.c.m.(4200, 10780) = 23 · 31 · 52 · 72

Euclidの互除法 (Euclidean algorithm)

大きな数に対して素因数分解が分からない時でも，2つの数aとbの最大公約数g.c.d.(a, b)

を簡単な方法で求める事が出来る．
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原理

a >= bとする．a÷ b：商を q，余りを rとする．すなわち，a = bq + r (0 <= r <= b− 1)

このとき．g.c.d.(a, b) = g.c.d.(b, r) 　 (∵ d：aと bの公約数 ⇐⇒ d：bと rの公約数)

algorithm

a >= bとする．

(1)　 a÷ b：商 q1，余り r1(r1 > 0) a = bq1 + r1 g.c.d.(a, b) = g.c.d.(b, r1)

(2)　 b÷ r1：商 q2，余り r2(r2 > 0) b = r1q2 + r2 g.c.d.(b, r1) = g.c.d.(r1, r2)

(3)　 r1÷r2：商 q3，余り r3(r3 > 0) r1 = r2q3 +r3 g.c.d.(r1, r2) = g.c.d.(r2, r3)

(4)　 r2÷r3：商 q4，余り r4(r4 > 0) r2 = r3q4 +r4 g.c.d.(r2, r3) = g.c.d.(r3, r4)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(k)　 rk−2 ÷ rk−1：商 qk，余り rk(rk > 0) rk−2 = rk−1qk + rk

g.c.d.(rk−2, rk−1) = g.c.d.(rk−1, rk)

(k+1)　 rk−1 ÷ rk：商 qk+1，余り rk+1 = 0 rk−1 = rkqk+1

d = g.c.d.(a, b) = g.c.d.(rk−1, rk) = rk:最大公約数

Example II.2.1　 g.c.d.(1547, 560)を見つけよ．

1547 = 560 · 2 + 427

560 = 427 · 1 + 133

427 = 133 · 3 + 28

133 = 28 · 4 + 21

28 = 21 · 1 + 7

21 = 7 · 3
g.c.d.(1547, 560) = 7

Proposition II.2.1(省略)

Proposition II.2.2　 d = g.c.d.(a, b) =⇒ ∃u, v : integer s.t d = au + bv

すなわち，2つの整数 aと bの最大公約数 dは aと bの整数係数の 1次結合表わせる．
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Outline of proof(以下の方法を拡張Euclidの互除法という)　Euclidの互除法の式を

逆にたどって，

d = rk = rk−2 − rk−1qkの式に rk−1 = rk−3 − rk−2qk−1を代入．それに，rk−2.rk−3, · · · を
次々に代入していけば，dは aと bの整数係数の 1次結合表わせる．

Example II.2.1(続き)

7 = 28− 21 · 1 = 28− (133− 28 · 4) · 1
= 5 · 28− 1 · 133 = 5 · (427− 133 · 3)− 1 · 133

= 5 · 427− 16 · 133 = 5 · 427− 16 · (560− 427 · 1)

= 21 · 427− 16 · 560 = 21 · (1547− 560 · 2)− 16 · 560

= 21 · 1547− 58 · 560

定義　 a, b:整数 (integer)とする．

aと bは互いに素 (relatively prime)

def⇐⇒ g.c.d.(a, b) = 1 (i.e. aと bは 1より大きな公約数を持たない)

定義 (Eulerの ϕ 関数)

　 n:自然数 (natural number)とする．

ϕ(n)
def
= # {b ∈ Z | 1 <= b <= n かつ g.c.d.(b, n) = 1}

(#は集合の個数を表わすこと事にする)

ϕ(n)は n以下の nと互いに素である数の個数である．

例　 ϕ(1) = # {1} = 1 , ϕ(2) = # {1} = 1 , ϕ(3) = # {1, 2} = 2 ,

ϕ(4) = # {1, 3} = 2 , ϕ(5) = # {1, 2, 3, 4} = 4 , ϕ(6) = # {1, 5} = 2

p：素数のとき，ϕ(p) = # {1, 2, · · · , p− 1} = p− 1

ϕ(pα) = pα − pα−1 = pα(1− 1

p
)

(∵ 1～pαのうち，pαと素でないものは {1 · p , 2 · p , · · · , pα−1 · p}の pα−1個)

問題 2-1　 (a)　つぎのことを証明せよ．

　 (i)　 pα‖a　かつ　 pβ‖b　 =⇒　 pα+β‖a · b
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　 (ii)　 pα‖a , pβ‖b　かつ　 α < β　 =⇒　 pα‖(a± b)

(b)　次の命題の反例を示せ．「pα‖a　かつ　 pα‖b　 =⇒　 pα‖(a + b)」

問題 2-2　 945の約数は何個あるか？　それらをすべて挙げよ．

問題 2-3　 nを正の奇数 (positive odd number)とする．

(a)　 nの
√

nより小さい約数と
√

nより大きい約数には 1対 1(1 to 1)の対応があるこ

とを示せ．(ここでは，nが奇数である必要はない)

(b)　 nの
√

n以上の約数と nを 2つの非負整数の平方の差 s2− t2のすべての書き表わ

し方と 1対 1(1 to 1)の対応があることを示せ．

(c)　 945を 2つの非負整数の平方の差に表わす方法をすべて挙げよ．

問題 2-4　 (a)　 n!を正確に割り切る (exactly divide)素数 pの巾は

[n/p] + [n/p2] + [n/p3] + · · · (有限和)

であることを示せ．

(b)　 100!は 2の何乗で割り切れるか？

100!は 3の何乗で割り切れるか？

100!は 5の何乗で割り切れるか？

100!は 7の何乗で割り切れるか？

100!を素因数分解せよ．

(c)　 Sb(n)：nを b−進法で表わしたとき，現れる 1個 1個の数字の和

とする．n!を正確に割り切る 2の巾は n− S2(n) であることを示せ．

さらに，n!を素数 pで正確に割り切る巾についての公式を見つけ，それを証明

せよ．

問題 2-5　 d = g.c.d.(360, 294)を 2つの方法で求めよ．

(a)　 2つの数を素因数分解して求める方法

(b)　 Euclidの互除法

問題 2-6　つぎの 2つの数の最大公約数を Euclidの互除法を用いて求め，その最大公約

数を 2つの数の 1次結合で表わせ．
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(a)　 26 , 18 (b)　 187 , 34 (c)　 841 , 160 (d)　 2613 , 2171

問題 2-7～問題 2-11(省略)

問題 2-12　実数係数 (任意の体でも良い)の多項式 (polynomial)について考える．

f, g：多項式

f |g def⇐⇒ ∃h：多項式　 s.t. g = f · h (f は gを割り切る)

g.c.d.(f, g)：f と gを割り切る最大次数の多項式

　　　　　　　一意的ではないが，0でない実数倍の違いだけ．

　　　　　　　最高次数の 係数を 1にする (monic)多項式とすれば，一意的

f と gは互いに素 def⇐⇒ g.c.d.(f, g) = 1

Euclidの互除法が整数の場合と同様に可能

(a)　 g.c.d.(x4 + x2 + 1, x2 + 1) =?

(b)　 g.c.d.(x4 − 4x3 + 6x2 − 4x + 1, x3 − x2 + x− 1) =?

(a)と (b)の場合に最大公約数を f と gの多項式係数の 1次結合で表わせ．

(g.c.d. = u(x)f(x) + v(x)g(x) となる多項式 u(x)と v(x)を見つけよ)

問題 2-13　 f(x) = 0 が重根をもつとき，

「α：f(x) = 0の重根 =⇒ α：g.c.d.(f(x), f ′(x)) = 0の根」

であることを示せ．さらに，x4 − 2x3 − x2 + 2x + 1 = 0　の重根を求めよ．

問題 2-14(Gaussian integer)

α：Gauss整数 (Gaussian integer)
def⇐⇒ α = a + bi (a.b ∈ Z)

ここで，Zは整数全体の集合を表わす．

α , β：Gauss整数であるとき，

　 α|β def⇐⇒ ∃γ　 s.t.　β = α · γ
　 g.c.d.(α, β)

def
= αとβを割り切る絶対値が最大であるGauss整数

　　　　　　　　　 (一意的ではないが，−1倍，±i倍の違いだけ)

Gauss整数の場合の Euclidの互除法

α÷ β (|α| >= |β| 6= 0 とする)
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α

β
に複素数平面上で最も近いGauss整数を商 γとし，余りを ρ = α− β · γとする．

　　　　　　　　　 (最も近いGauss整数が複数個あるときはそのどれでも良い)

　このとき，|ρ| = |(α
β
− γ)| · |β| <=

1√
2
|β|

　 α = β · γ + ρ (|ρ| <= |β|)と書け，g.c.d.(α, β) = g.c.d.(β, ρ)

　以下，整数の場合の Euclidの互除法と同様にすればよい，

次の最大公約数を求めよ．

(a)　 g.c.d.(5 + 6i, 3− 2i) (b)　 g.c.d.(7− 11i, 8− 19i)

問題 2-15　ある種の大きな素数を 2つの平方の和に表わす方法を与える．

素数 pが b6 + 1の形の数を割り切っているとする．

このとき，p = c2 + d2 = (c + di)(c− di)となる cと dを見つけたい．

b6 + 1 = (b2 + 1)(b4 − b2 + 1) , b4 − b2 + 1 = (b2 − 1)2 + b2

pは (b2 + 1)か (b4 − b2 + 1)のどちらかを割り切っている．

pが b2 + 1 = (b + i)(b− i)を割り切っているときは，

　　　　　　　　　　　 c + di = g.c.d.(p, b + i)とすればよい．

pが b4 − b2 + 1 = ((b2 − 1) + bi) · ((b2 − 1)− bi)を割り切っているときは，

　　　　　　　　　　　 c + di = g.c.d.(p, (b2 − 1) + bi)とすればよい．

　Example　 12277は 206 + 1 = (202 + 1)(204 − 202 + 1)を割り切っており，

　　 204 − 202 + 1 = 159601を割り切っている．

　　よって，g.c.d.(1277, (202 − 1) + 20i) = g.c.d.(1277, 399 + 20i)を見つけたい．

　　　　　 12277 = (399 + 20i)(31− 2i) + (−132 + 178i)

　　　　　 399 + 20i = (−132 + 178i)(−1− i) + (89 + 66i)

　　　　　−132 + 178i = (89 + 66i)(2i)

　　以上より，g, c, d, (1277, 399 + 20i) = 89 + 66i , 12277 = 892 + 662

(a)　 196 + 1 = 2 · 132 · 181 · 769である．素数 769を Euclidの互除法を用いて，

　 2つの平方の和で表わせ．

(b)　素数 3877は 156 + 1を割り切る．3877を 2つの平方の和で表わせ．

(c)　素数 38737は 236 + 1を割り切る．38737を 2つの平方の和で表わせ．
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2.3 Congruences(合同式)

定義

a ≡ b mod m
def⇐⇒ m|(a− b) (i.e. (a− b)がmの倍数)

このとき，aはmを法として bと合同であるという．

基本的性質

1.　 (i)　 a ≡ a mod m

　 (ii)　 a ≡ b mod m ⇐⇒ b ≡ a mod m

　 (iii)　 a ≡ b mod m かつ　 b ≡ c mod m =⇒ a ≡ c mod m

　　 (i)～(iii)をみたす関係≡を同値関係という．
2.　集合に同値関係があるとき，同じ関係をもつものを集めたものを同値類という．

いまの場合，mで割った余りが同じであるものを集めたものであるので，これを

mを法とする剰余類といい，Z/mZで表わす．Z/mZは

　　　 0と合同な同値類

　　　 1と合同な同値類

　　　 2と合同な同値類

　　　　　 · · · · · · · · ·
　　　 (m− 1)と合同な同値類

のm個の同値類が出来る．

3.　 a ≡ b mod m かつ c ≡ d mod m

　=⇒ (a± c) ≡ (b± d) mod m かつ ac ≡ bd mod m

これは，Z/mZにおいて，足し算・引き算・掛け算が出来る事を示している．

Z/mZは次のような性質をみたすと言う意味で可換環 (commuttive ring)であるという．

　　 (1-1)　 a + b = b + a

　　 (1-2)　 (a + b) + c = a + (b + c)

　　 (1-3)　 ∃0 s.t. a + 0 = 0 + a = a

　　 (1-4)　 ∀a, ∃(−a) s.t. a + (−a) = (−a) + a = 0

　　 (2-1)　 a · b = b · a
　　 (2-2)　 (a · b) · c = a · (b · c)
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　　 (2-3)　 (a + b) · c = a · c + b · c , a · (b + c) = a · b + a · c
　さらに，次の関係もみたすとき，可換体 (commutative field)であるという．

　　 (3-1)　 ∃1 s.t. a · 1 = 1 · a = a

　　 (3-2)　 ∀a 6= 0, ∃a−1 s.t. a · a−1 = a−1 · a = 1

4.　 d|m (dがmの約数) であるとき，a ≡ b mod m =⇒ a ≡ b mod d

5.　mと nが互いに素であるとき (g.c.d.(m,n) = 1)

　　 a ≡ b mod m , a ≡ b mod n =⇒ a ≡ b mod m · n

Proposition II.3.1　Z/mZにおいて，

　 aが掛け算の逆元 b = a−1 (i.e. a · b ≡ a · a−1 ≡ 1 mod m)をもつ

　⇐⇒ g.c.d.(a,m) = 1

proof　=⇒の証明
背理法　 g.c.d.(a,m) = d > 1 とする．

　 ab− 1 はmの倍数 =⇒ ab− 1は dの倍数 =⇒ 1は dの倍数 (矛盾)

⇐=の証明

g.c.d.(a,m) = 1とすると，ua + vm = 1となる u, vがある (u, v ∈ Z)．

b = uとおくと，ab− 1 = −vmより，ab ≡ 1 mod mである．

Remark　 g.c.d.(a,m) = 1 , ab ≡ 1 mod mとするとき，a−nで bnの剰余類を表わす．

Example II.3.1　 841を法とする 160の逆元 160−1を見つけよ．

問題 2-6(c)より，

　　　　 841 = 160 · 5 + 41

　　　　 160 = 41 · 3 + 37

　　　　 41 = 37 · 1 + 4

　　　　 37 = 4 · 9 + 1

　　　　 4 = 1 · 4 + 0

より，

　　　　 1 = 37− 4 · 9 = 37− (41− 37 · 1) · 9
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　　　　 = 37 · 10− 41 · 9 = (160− 41 · 3) · 10− 41 · 9
　　　　 = 160 · 10− 41 · 39 = 160 · 10− (841− 160 · 5) · 39

　　　　 = 160 · 205− 841 · 39

以上より，160 · 205 ≡ 1 mod 841すなわち，160−1 ≡ 205 mod 841

Corollary 1 of Proposition II.3.1　 pを素数とする．Z/pZの 0でない剰余類 aは乗

法的逆元をもつ．よって，Z/pZは可換体 (commutative field)になる．これをF pとあら

わし，標数 pの体という．

Corollary 2 of Proposition II.3.1　 0 <= a, b < mのとき，一次合同方程式

ax ≡ b mod m

について考える．

(1)　 g.c.d.(a,m) = 1のとき，ある解 x0が存在し，すべての解 xは x = x0 + mnの形

である．

(2)　 g.c.d.(a,m) = d > 1のとき，d|bであるときのみ解をもち，
a = a′d , b = b′d , m = m′d

とすると，g.c.d.(a′,m′) = 1となり，

ax ≡ b mod m ⇐⇒ a′x ≡ b′ mod m′

Corollary 3 of Proposition II.3.1

a ≡ b mod m , c ≡ d mod m , g.c.d.(c,m) = 1(⇒ g.c.d.(d,m) = 1)とすると，

ac−1 ≡ bd−1 mod m

が成り立つ．

proof

cd(ac−1 − bd−1) ≡ ad − bc ≡ 0 mod mである．cd(ac−1 − bd−1)がmの倍数となり，

g.c.d.(cd,m) = 1より，(ac−1 − bd−1)がmの倍数で，ac−1 ≡ bd−1 mod mが成り立つ．



16 第 2章 整数の話

Proposition II.3.2(Fermatの小定理)　 pを素数とし，aを任意の整数とするとき，

ap ≡ a mod p

が成り立つ，さらに，aが pの倍数でなければ，

ap−1 ≡ 1 mod p

が成り立つ，

proof

p 6 |a(aが pの倍数でない)とする．

0 · a , 1 · a , 2 · a , (p− 1) · a
はすべて異なる剰余類に属する．［なぜなら，i · a ≡ j · a mod p (0 <= i, j <= p− 1)とする

と，(i− j) · aは pの倍数となり，aは pと互いに素であることから，(i− j)が pの倍数と

なり，0 <= i, j <= p− 1より，i = jでなければならない．］

{1 · a, 2 · a, 3 · a, (p− 1) · a}を並べ替えると，pを法として，{1, 2, 3, (p− 1)}と等
しい．このことから，

(1 · a) · (2 · a) · (3 · a) · · · ((p− 1) · a) ≡ (p− 1)! mod p

(p− 1)! · ap−1 ≡ (p− 1)! mod p

(p− 1)!は pと互いに素であるので，

ap−1 ≡ 1 mod p

となる．この両辺に aをかければ，ap ≡ a mod pが得られ，これは aが pの倍数のとき

も成り立つ．

Corollary of Proposition II.3.2　 pを素数とし，aを pの倍数でない (p 6 |a)とする．

また，

n ≡ m mod p− 1

とすると，

an ≡ am mod p

が成り立つ．

proof　 n ≡ m mod p− 1であることより，n = m + c(p− 1)と書ける．

an = am · (ap−1)c ≡ am mod p (∵ ap−1 ≡ 1 mod p)
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Example II.3.2　 21000000を 7進法で表示するとき，第 1位の数字は何か？(21000000を 7

で割った余りを求めよ)

p = 7とすると，1000000÷ (7− 1) = 166666 · · · 4 i.e. 1000000 = 6× 166666 + 4

1000000 ≡ 4 mod (7− 1)より，21000000 ≡ 24 ≡ 2 mod 7

Proposition II.3.3(中国式剰余定理=Chinese Remainder Theorem)

連立合同方程式




x ≡ a1 mod m1

x ≡ a2 mod m2

· · · · · ·
x ≡ ar mod mr

を考える

i 6= j のとき g.c.d.(mi,mj) = 1(どの異なるmi とmj も互いに素)をみたせば，M =

m1m2 · · ·mrを法として一意的に解は存在する．

proof

M を法として解は一意的であることの証明

x′と x′′を 2つの解とする．

すべての iについて，

x = x′ − x′′ ≡ 0 mod mi

どのmiも互いに素であるので，基本的性質 5より，

x = x′ − x′′ ≡ 0 mod M = m1m2 · · ·mr

解の存在証明

Mi = M/miとおく．g.c.d.(Mi,mi) = 1より，∃Ni s.t. NiMi ≡ 1 mod mi

x =
r∑

j=1

ajMjNj

i 6= jのとき，Miはmiの倍数になっており，MiNi ≡ 1 mod miより，

x ≡ aiMiNi ≡ ai mod mi

Corollary of Proposition II.3.3

mと nが互いに素 (g.c.d.(m,n) = 1) =⇒ ϕ(mn) = ϕ(m)ϕ(n)
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proof

0～(mn− 1)にmnと互いに素な数が何個あるか？　 ϕ(mn)

0 <= ∀j <= (mn− 1)　　 j1：jをmで割ったときの余り

j2：jを nで割ったときの余り

Proposition II.3.3より，jと (j1, j2)は 1対 1に対応する．

(∵　 ∃1j s.t. j ≡ j1 mod m　かつ　 j ≡ j2 mod n)

また，

jとmnと互いに素　⇐⇒　 j1がmと互いに素　かつ　 j2が nと互いに素

以上より，

ϕ(mn) = (mnと互いに素な jの個数)

= (mと互いに素な j1の個数)× (nと互いに素な j2の個数)

= ϕ(m)ϕ(n)

このCorollaryを用いると，素因数分解された n = pα1
1 pα2

2 · · · pαr
r とすると，

ϕ(n) = ϕ(pα1
1 pα2

2 · · · pαr
r )

= ϕ(pα1
1 )ϕ(pα2

2 ) · · ·ϕ(pαr
r )

= pα1
1 (1− 1

p1

)pα2
2 (1− 1

p2

) · · · pαr
r (1− 1

pr

)

= n(1− 1

p1

)(1− 1

p2

) · · · (1− 1

pr

)

ϕ(n) = n(1− 1

p1

)(1− 1

p2

) · · · (1− 1

pr

) = n× ∏

p|n
p :素数

(1− 1

p
)

例　 ϕ(12) = 12 · (1− 1

2
) · (1− 1

3
) = 4 , ϕ(100) = 100 · (1− 1

2
) · (1− 1

5
) = 40

Proposition II.3.4(省略)

Proposition II.3.5(Euler)　 aがmと素 (g.c.d.(a,m) = 1)であるとき，

aϕ(m) ≡ 1 mod m

が成り立つ．
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proof

(i)　m = pα(p :素数)のとき，αに関する帰納法で証明する．

　　 α = 1のとき，aϕ(m) = aϕ(p) = ap−1 ≡ 1 mod p = m

　　 α = kのとき，成り立つと仮定すると　 aϕ(pk) = apk−pk−1 ≡ 1 mod pk

　　 α = k + 1のときは　 aϕ(pk+1) = apk+1−pk
= ap(pk−pk−1) =

(
apk−pk−1

)p

　　　帰納法の仮定より，apk−pk−1
= 1 + b · pkと書け，

　　　 aϕ(pk+1) = (1 + b · pk)p = pC0 + pC1b · pk + pC2(b · pk)2 + · · · pCp(b · pk)p

　　　この右辺の第 1項目を除けばすべての項は pk+1で割り切れるので，

　　　 aϕ(pk+1) ≡ pC0 = 1 mod pk+1

(ii)　m = pα1
1 pα2

2 · · · pαr
r のとき，任意の iについて，

　　　 aϕ(m) = aϕ(p
α1
1 )ϕ(p

α2
2 )···ϕ(pαr

r ) ≡ 1 mod pαi
i (∵ aϕ(p

αi
i ) ≡ 1 mod pαi

i )

　　合同式の基本的性質 5より，

　　　 aϕ(m) ≡ 1 mod m = pα1
1 pα2

2 · · · pαr
r

が成り立つ．

Corollary of Proposition II.3.5

aとmが互いに素 (g.c.d.(a,m) = 1)とし，nをϕ(m) で割った余りを n′とするとき，

an ≡ an′ mod m

が成り立つ．

proof　 n = n′ + c · ϕ(m)と書けるので，

an = an′ ·
(
aϕ(m)

)c ≡ an′ mod m (∵ aϕ(m) ≡ 1 mod m)

Remark

aとmが互いに素であるとき，aϕ(m) ≡ 1 mod mであるが，ax ≡ 1 mod mとなるもっ

と小さな xを見つけたい．

Proposition II.3.5(Euler)の証明から，m = pα1
1 pα2

2 · · · pαr
r のとき，xとして，

ϕ(pα1
1 ) , ϕ(pα2

2 ) , · · · , ϕ(pαr
r )の最小公倍数をとれば，ax ≡ 1 mod mとなる．

例　m = 105 = 3·5·7，aをmと互いに素であるとすれば，ϕ(3) = 2 , ϕ(5) = 4 , ϕ(7) = 6

の最小公倍数 12をとれば，a12 ≡ 1 mod 105　 (ϕ(105) = 2 · 4 · 6 = 48)
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Example II.3.3　 21000000 ≡? mod 77

解法 1

77 = 7 · 11 , , ϕ(7) = 6 , ϕ(11) = 10 , 6と 10の最小公倍数は 30

230 ≡ 1 mod 77 , 1000000 = 30 · 33333 + 10

21000000 = (230)33333 · 210 ≡ 210 = 1024 = 77 · 13 + 23 ≡ 23 mod 77

解法 2

21000000 ≡? mod 7

　 1000000 = (7− 1) · 166666 + 4 より，21000000 ≡ 24 = 16 ≡ 2 mod 7

21000000 ≡? mod 11

　 1000000 = (11− 1) · 100000 + 0 より，21000000 ≡ 20 ≡ 1 mod 11

x = 21000000 ≡ 2 mod 7 , x ≡ 1 mod 11 ,中国式剰余定理の証明と，

11−1 ≡ 2 mod 7 , 7−1 ≡ 8 mod 11より，

　 x = 21000000 ≡ 2 · 2 · 11 + 1 · 8 · 7 = 100 ≡ 23 mod 77

繰り返し自乗法

m , nが大きいとき，bn ≡? mod m

nを 2進法で表わす．n = n0 + n1 · 2 + n2 · 22 + n3 · 23 + · · ·+ nk−1 · 2k−1

b1
set≡ b2 mod m , bj

set≡ (bj−1)
2 mod m (j >= 2)

bn = bn0+n1·2+n2·22+n3·23+···+nk−1·2k−1

≡ bn0 · (b2)n1 · ((b2)2)n2 · · · (((b2)2)···)nk−1

≡ bn0 · (b1)
n1 · (b2)

n2 · · · (bk−1)
nk−1 mod m

(0)　 n0 = 0のとき，a
set≡ 1 mod m , n0 = 1のとき，a

set≡ b mod m

(1)　 n1 = 0のとき，a
set≡ a mod m , n1 = 1のとき，a

set≡ a · b1 mod m

(2)　 n2 = 0のとき，a
set≡ a mod m , n2 = 1のとき，a

set≡ a · b2 mod m

· · · · · · · · · · · · · · · · · ·
(k-1)　 nk−1 = 0のとき，a

set≡ a mod m , nk−1 = 1のとき，a
set≡ a · bk−1 mod m

こうして得られた aについて，

bn ≡ a mod m
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Proposition II.3.6(省略)

Proposition II.3.7　
∑

d|n
ϕ(d) = n

proof　
∑

d|n
ϕ(d) = f(n)とおく．

mと nが互いに素であるとき，f(m · n) = f(m) · f(n)が成り立つ．

　　なぜなら，d|(m · n)
1to1←−−→ d1 · d2 = d , d1|m , d2|n

　　　 ϕ(d) = ϕ(d1 · d2) = ϕ(d1) · ϕ(d2)

　　　 f(m · n) =
∑

d|(m·n)

ϕ(d)

=
∑

d1·d2|(m·n)

ϕ(d1) · ϕ(d2)

=
∑

d1|m
d2|n

ϕ(d1) · ϕ(d2)

=


 ∑

d1|m
ϕ(d1)


 ·


∑

d2|n
ϕ(d2)




= f(m) · f(n)

pが素数のとき，f(pα) = pα

∵ f(pα) = ϕ(1) + ϕ(p) + ϕ(p2) + · · ·+ ϕ(pα)

= 1 + (p− 1) + (p2 − p) + ·+ (pα − pα−1)

= pα

n = pα1
1 · pα2

2 · · · pαr
r (素因数分解)のとき，

f(n) = f(pα1
1 ) · f(pα2

2 ) · · · f(pαr
r ) = pα1

1 · pα2
2 · · · pαr

r = n

問題 3-1　次の解を求めよ．
(a)　 3x ≡ 4 mod 7 (d)　 27x ≡ 25 mod 256

(b)　 3x ≡ 4 mod 12 (e)　 27x ≡ 72 mod 900

(c)　 9x ≡ 12 mod 21 (f)　 103x ≡ 612 mod 676

問題 3-2　完全平方数を 16進法で表わすとき，第 1位の数字は何になるか？　可能な数

字をすべてあげよ．
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問題 3-3　連続する 2つの正の奇数の積を 12進法で表わすとき，第 1位の数字は何にな

るか？　可能な数字をすべてあげよ．

問題 3-4　 nを 10進法で表わすとき，次のことを証明せよ．

3|n ⇐⇒ 3|(各桁の数字の和)

9|n ⇐⇒ 9|(各桁の数字の和)

問題 3-5　 30|(n5 − n) であることを証明せよ．

問題 3-6　 8ft×9ftの場所をタイル張りにするのに 72枚のタイルを買った．価格は$100

以下であったが忘れてしまった．レシートは $?0.6? となっているが．?のところはわか

らない．価格はいくらであったか？

問題 3-7　 pを 2より大きな素数とし，m = pαあるいはm = 2 · pαとするとき，次のこ

とを証明せよ．

x2 ≡ 1 mod m =⇒ x ≡ 1 mod m あるいは x ≡ −1 mod m

問題 3-8　次のWilsonの定理を証明せよ．

pが素数 =⇒ (p− 1)! ≡ −1 mod p

また，次のことを証明せよ．

nが素数でない =⇒ (n− 1)! 6≡ −1 mod n

問題 3-9　次の合同方程式の解で 1000より小さい非負整数を求めよ．



x ≡ 4 mod 7

x ≡ 4 mod 9

x ≡ 4 mod 11

問題 3-10　次の合同方程式の解で最小の非負整数解を求めよ．



x ≡ 1 mod 11

x ≡ 2 mod 12

x ≡ 3 mod 13
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問題 3-11　次の合同方程式の解で最小の非負整数解を求めよ．

(a)　





x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 4 mod 11

x ≡ 5 mod 16

(b)　





x ≡ 12 mod 31

x ≡ 87 mod 127

x ≡ 91 mod 255

(c)　
{

19x ≡ 103 mod 900

10x ≡ 511 mod 841

問題 3-12　 9や 10で割ると 7余り，11で割ると 3あまる 3桁の数を xとし，9で割ると

8余り，10で割ると 7余り，11で割ると 1余る 6桁の数を yとするとき，yは xで割り切

れる．このときの商を求めよ．

問題 3-13　 (省略)

問題 3-14　 3875 ≡? mod 103 (繰り返し自乗法を用いよ)

問題 3-15～問題 3-16　 (省略)

問題 3-17　 ϕ(90) , ϕ(91) , ϕ(92) , · · · , ϕ(100)を求めよ．

問題 3-18　 ϕ(n) <= 12となる nをすべて求めよ．

また，それらがすべてであることを示せ．

問題 3-19　 nを完全平方数でないとき，次のことを証明せよ．

n− 1 > ϕ(n) > n− n
2
3 =⇒ nは 2つの異なる素数の積である．

問題 3-20　次のことを証明せよ．

m >= 8 , m = 2α , g.c.d.(a,m) = 1 =⇒ a
ϕ(m)

2 ≡ 1 mod m

問題 3-21　m = 7785562197230017200 = 24 · 33 · 52 · 7 · 11 · 13 · 19 · 31 · 37 · 41 · 61 · 73 · 181

とするとき，次の問に答えよ．

(a)　 x ≡ 6647362 mod mを満たす最小の非負整数 xを求めよ．

(b)　 aをmより小さいmと互いに素な正の整数とするとき，

ax ≡ a−1 mod m

となる 500より小さな非負整数 xを見つけるアルゴリズムは？
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問題3-22　次のようにProposition II.3.7の別証明を与えよ．nの各約数dについて，Z/nZ

の部分集合 Sdを次のように定める．

Sd =
{
j · n

d
| j = 0, 1, · · · , d− 1

}

(a)　 Sdはϕ(d)個の Sdを生成する元 (要素)xを持つことを示せ．ただし，xが Sdを生成

するとは，Sdのすべての元が nを法として xの倍数で表わされることをいう．

例　 n = 12のとき，S1 = {0} , S2 = {0, 6} , S3 = {0, 4, 8} , S4 {0, 3, 6, 9}
S6 = {0, 2, 4, 6, 8, 10} , S12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

アンダーラインをつけた元が Sdを生成している元

(b)　Z/nZの各元 xは丁度 1つだけの Sdを生成していることを示せ．

(上記の例において，0は S1を，1は S12を，2は S6を，3は S4を，4は S3を，· · ·，11は S12

を生成している)

(a)と (b)より Proposition II.3.7が証明できる．

問題 3-23

(a)　算術の基本定理 (素因数分解の定理)を用いて，

∏

p:素数

1

1− 1
p

が無限大に発散することを示せ．

(b)　 (a)を用いて，

∑

p:素数

1

p

が無限大に発散することを示せ．

(c)　 lim
j→∞

ϕ(nj)

nj

= 1となる数列 {nj}で nj →∞となるものを見つけよ．

また， lim
j→∞

ϕ(nj)

nj

= 0となる数列 {nj}で nj →∞となるものを見つけよ．

問題 3-24　Nは極めて大きな秘密の整数で，これを知っているとミサイル発射装置のカ

ギを解除できる．いま，あなたには一人の指揮官と n人の中尉がいる．N を知っている

指揮官がダメになったとき，中尉たちにN についての部分的情報を与えて，どの 3人の

中尉たちでも賛成すればミサイルを発射できるようにしたい．(ただし，2人の賛成では
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決してミサイル発射をできないとする)

(a)　 p1, p2, · · · , pnを異なる素数とし，そのどれも，
3
√

N より大きく，
√

N より小さいと

する．{pi}を用いて，中尉たちに与えるべきNについての部分的情報を述べよ．また，そ

れによって，どのようにしてN を求めたらよいか？

(b)　 (a)の場合を拡張して，どの k人の中尉たちが賛成してもミサイルを発射できるよ

うにするにはどうしたらよいか？　ただし，k − 1人賛成では決してミサイル発射をでき

ないとする．

2.4 因数分解の応用

Proposition II.4.1　任意の整数 bと任意の自然数 nに対して，bn − 1は b− 1で割り切

れ，その商は bn−1 + bn−2 + · · ·+ b2 + b + 1である．

proof　多項式の恒等式として証明すればよい．

第 2の証明 (b−進法を用いる証明)

bn − 1を b−進法で表わせば n個の数字 (b − 1)が並んで表わされる．他方，bn−1 +

bn−2 + · · · + b2 + b + 1は b−進法では (111 · · · 111)bと書け，これに (b − 1)をかければ，

((b− 1)(b− 1)(b− 1) · · · (b− 1)(b− 1)(b− 1))b = bn − 1となる．

Corollary of Proposition II.4.1　任意の整数 bと任意の自然数mと nに対して，

bmn − 1 = (bm − 1)(bm(n−1) + bm(n−2) + · · ·+ b2m + bm + 1)

である．

proof　 Proposition II.4.1において，bを bmに置き換えればよい．

例　 235 − 1は 25 − 1 = 31や 27 − 1 = 127で割り切れる．
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Proposition II.4.2　 bをmと素な整数とし，aと cを自然数とする．

ba ≡ 1 mod m , bc ≡ 1 mod m , d＝ g.c.d(a, c) =⇒ bd ≡ 1 mod m

proof　 Euclidの互除法をを用いて，d = ua + vcと表わすことができる．uと vの一方

は正の整数であり，他方は 0か負の整数である．いま，u > 0 , v <= 0として一般性を失

わない．ba ≡ 1 mod mの両辺を u乗し，bc ≡ 1 mod mの両辺を (−v)乗して，前者を

後者で割れば，bd = bua+vc ≡ 1 mod mが得られる．

Proposition II.4.3　 pを bn − 1を割り切る素数とすれば，次のどちらかが成り立つ．

(i)　 nのある真の約数 dに対して，p|bd − 1

(ii)　 p ≡ 1 mod n．もし p > 2で nが奇数であれば，p ≡ 1 mod 2n

proof　 bn ≡ 1 mod pであり，Fermatの小定理より bp−1 ≡ 1 mod pである．Proposition

II.4.2より，d = g.c.d.(n, p− 1)とおけば，bd ≡ 1 mod p

もし，d < nのとき，nの真の約数 dに対して，p|bd − 1すなわち (i)が成り立つ．

d = nのときは，dは p− 1の約数なので，d|(p− 1)，p ≡ 1 mod d = n．

さらに，pと nが両方とも奇数のときは，n|(p− 1)より，明らかに 2n|(p− 1)となり，

p ≡ 1 mod 2n

この Propositionはあるタイプの大きな整数の因数分解に用いられる．

Example

1.　 211 − 1 = 2047を因数分解しよう．p|(211 − 1)とすれば，Proposition II.4.3より，

p ≡ 1 mod 22，p = 23, 67, 89, · · · について割り切れるかテストすればよい
(実際，

√
2047 = 45. · · · より小さい数だけテストすればよい)．

2047 = 23 · 89が得られえる．

また，213− 1 = 8191が素数であることは同様に簡単にわかる．2n− 1の形の素数を

Mersenne素数という．

2.　 312 − 1 = 531440を因数分解しよう．Proposition II.4.3より，より小さな因数

31 − 1, 32 − 1, 33 − 1, 34 − 1, 36 − 1 = (33 − 1)(33 + 1)の因数について，割り切れる

か試みよう．そうすると，24 · 5 · 7 · 13が得られ，531440/(24 · 5 · 7 · 13) = 73(素数)
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すべての素因数が 3d − 1 (dは 12の真の約数)の中にあらわれるとは限らない．

すなわち，73 ≡ 1 mod 12である．

3.　 235− 1 = 34359738367を因数分解しよう．まず，2d− 1 (d = 1, 5, 7)の因数について

考えよう．素因数 31, 127が得られる．(235 − 1)/(31 · 127) = 8727391．

Proposition II.4.3より，残りの素因数は≡ 1 mod 70であるので，71, 211, 281, · · ·
について，チェックする．

√
8727391 = 2954. · · · までのすべてについてチェックする

必要があると心配されるが，直ちに 8727391 = 71 · 122921が得られ，
√

122921 = 350. · · · までのすべてについてチェックするだけでよい．122921は素数

であることがわかり，235 − 1 = 34359738367 = 31 · 71 · 127 · 122921と素因数分解さ

れる．(122921 = 70 · 1756 + 1)

Remark　 8桁電卓を用いて Example 3 を計算する方法

235を計算するのに，226 = 67108864(8桁)と 29 = 512を掛け算するには，

235 = 512 · (67108 · 1000 + 864) = 34359296 · 1000 + 442368 = 34359738368

　次に，235 − 1を 31 · 127 = 3937で割るには，まず，34359738を 3937で割り，

その商の整数部分
[
34359738

3937

]
= 8727をとる．次に，34359738 = 3937 · 8727 + 1539

その後，
34359738367

3937
=

(3937 · 8727 + 1539) · 1000 + 367

3937

= 8727000 +
1539367

3937

= 8727391

を得る．

問題 4-1　 nを奇数とするとき，

bn + 1 = (b + 1)(bn−1 − bn−2 + · · ·+ b2 − b + 1)

となることを 2つの方法で示せ．1つは多項式の恒等式を用いる方法．もう一つは

b−進法を用いる方法

問題 4-2　 2n − 1が素数であれば，nも素数であることを示せ．

また，2n + 1が素数であれば，nは 2の巾乗であることを示せ．

2n − 1のタイプの素数をMersenne素数といい，最初のほうは 3, 7, 31, 127, · · ·
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2n + 1のタイプの素数をFermat素数といい，最初のほうは 3, 5, 17, 257, · · ·

問題 4-3　m > 2とし，bをmと素な数，aと cを自然数とする．次のことを証明せよ．

ba ≡ −1 mod m , bc ≡ ±1 mod m , d＝ g.c.d(a, c)

=⇒
bd ≡ −1 mod m　かつ　 a/dは奇数

問題 4-4　次のことを証明せよ．

pを bn + 1を割り切る素数とすれば，次のどちらかが成り立つ．

(i)　 nの n/dが奇数であるようなある真の約数 dに対して，p|bd + 1

(ii)　 p ≡ 1 mod 2n

問題 4-5　m = 224 + 1 = 16777217とするとき，次の問に答えよ．

(a)　mを割り切る Fermat素数を見つけよ．

(b)　他の素因数は≡ 1 mod 48であることを示せ．

(c)　mを素因数分解せよ．

問題 4-6　 315 − 1と 324 − 1を素因数分解せよ．

問題 4-7　 512 − 1を素因数分解せよ．

問題 4-8　 105 − 1，106 − 1と 108 − 1を素因数分解せよ．

問題 4-9　 233 − 1と 221 − 1を素因数分解せよ．

問題 4-10　 215 − 1，230 − 1と 260 − 1を素因数分解せよ．

問題 4-11　 (a)　 aを 1より大きな整数とし，d = g.c.d.(m,n)とすれば，

g.c.d.(am − 1, an − 1) = ad − 1であることを示せ．

(b)　 (省略)
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2.5 公開鍵暗号とRSA暗号

ここで，暗号にしたい元の文を平文 (plain text)といい，暗号化(encryption または

enciphering)された文を暗号文 (cipher text)と呼ぶ．暗号文を元の文に戻すことを復

号あるいは復号化(decryption または deciphering)という．平文を何文字かに区切っ

て暗号文に変換する．区切る文字数 kは予め決めておく．その k個の文字からなる文字列

を暗号化されたものは l個の文字からなる文字列に変換されるとする．

P：k個の文字からなる文字列の集合

C：l個の文字からなる文字列の集合

このとき，暗号化 f と復号化 f−1は次のような図式となる．

P f−→ C f−1−→ P

かっての暗号システムは暗号化 f が分かれば，復号化 f−1が用意に分かる暗号であり，

そのために f や f−1を秘密にする必要があった．f が分かっても，f−1が分かりにくい暗

号である公開鍵暗号システム (public key cryptosystem)の考え方が約 30年前に発見

された．

その公開鍵暗号システムに最も古くから用いられ最もポピュラーなものがRSA暗号シス

テム (RSA cryptosystem)である．RSAは 3人の発見者 Rivest, Shamir, Adlemanの頭

文字からその名が付いている．

公開鍵暗号システム

　　公開鍵 (暗号の送り手が知っている．他人に知られても良い)　　　　：f

　　秘密鍵 (暗号の受け手だけが知っている．他人に知られてはいけない)：f−1

RSA暗号システム

pと q：極めて大きな 2つの素数 (十進法で 100桁ほど，最近はもっと大きなもの)

n = pq , ϕ(n) = ϕ(pq) = (p− 1)(q − 1) = n + 1− (p + q)

e：ϕ(n)と互に素な数

d = e−1 mod ϕ(n) (i.e. de ≡ 1 mod ϕ(n))

今，P の元 (暗号文)は nより小さな数に数値化されているとしよう．方法は後で述べ

ることにする．
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　　公開鍵：(n, e)　　 (p.q, ϕ(n), dは他の人に知られてはいけない)

　　秘密鍵：(n, d)

極めて大きな数nの素因数分解は計算が困難であるので，nとeの情報だけでは，p, q, ϕ(n), d

は見つけるのが困難である．秘密鍵 (n, d)が他の人に知れることは無いと考えられる．

暗号化と復号化

P：数値化された平文 (0 <= P <= n− 1 )

C：数値化された暗号文 (0 <= C <= n− 1 )

暗号化

C = f(P ) ≡ P e mod n (0 <= f(P ) <= n− 1)

復号化

f−1(C) ≡ Cd mod n (0 <= f−1(C) <= n− 1)

復号化されていることの証明

P de − P = P (P de−1 − 1) ≡ 0 mod p

が成り立つ．なぜなら，Pがpの倍数のときは明らか．Pがpの倍数でないときは，de−1が

p−1の倍数なのでFermatの小定理の系 (Corollary of Proposition II.3.2)よりP de−1−1 ≡ 0

mod pとなり，成り立つ．

同様に，

P de − P = P (P de−1 − 1) ≡ 0 mod q

も成り立つので，合同式の基本的性質 5より，

P de − P = P (P de−1 − 1) ≡ 0 mod n = pq

すなわち，f−1(C) ≡ Cd ≡ P de ≡ P mod n

となり，復号化される．

注意

g.c.d.(P, n) = 1のときは，de ≡ 1 mod ϕ(n)と Eulerの定理の系 (Corollary of Propo-

sition II.3.5)より，簡単に

f−1(C) ≡ P de ≡ P mod n

が証明される．
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文字列の数値化と数値の文字列化

・N：使用する文字の種類の数

(アルファベットなら 26，大文字小文字を区別するなら 52，

その他記号なども含めればもっと多くなる)

・N 種類の文字に 0～N − 1の数を割り当てる．

・Nk <= n <= N l (l = k + 1とすればよい)とする．

・平文を前のほうから k個ずつ区切り，k文字からなる各文字列をN 進法表示され

た k桁の数値 (<= Nk − 1 <= n− 1)と見る．

・f によって暗号化された数値は nより小さい数となるので，これを l桁にN 進法

し，，これを l個の文字からなる文字列に変換する．

・復号化のときはこの逆をすればよい．

以下，いくつかの例を挙げるが，計算が複雑にならないように，p, qは大きくない素数

を考える．実際の場合にはこれでは他人に解読されてしまう．

Example

1.　 p = 2, q = 13 , n = 2 · 13 = 26 , ϕ(2 · 13) = (2− 1)(13− 1) = 12

e = 5 , d = 5−1 ≡ 5 mod 12

N = 26 , 0(A)～25(Z)を割り当てる． k = l = 1

暗号化　平文=”KOBE”　　数値=10,14,1,4

f(10) = 105 ≡ 4, f(14) = 145 ≡ 14, f(1) = 15 ≡ 1, f(4) = 45 ≡ 10 mod 26

暗号文=”EOBK”

復号化　暗号文=”EOBK”　　数値=4,14,1,10

f−1(4) = 45 ≡ 10, f−1(14) = 145 ≡ 14, f−1(1) = 15 ≡ 1, f−1(10) = 105 ≡ 4

mod 26

復号文=”KOBE”

2.　 p = 3, q = 11 , n = 3 · 11 = 33 , ϕ(3 · 13) = (3− 1)(11− 1) = 20

e = 7 , d = 7−1 ≡ 3 mod 20

N = 30 , 0(A)～25(Z),26(Ã),27(,),28(.),29(?)を割り当てる． k = 1, l = 2
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暗号化　平文=”PRIME NUMBER”　　数値=15,17,8,12,4,26,13,20,12,1,4,17

以下， mod 33　とする．

f(15) = 157 ≡ 27(A,), f(17) = 177 ≡ 8(AI), f(8) = 87 ≡ 2(AC)

f(12) = 127 ≡ 12(AM), f(4) = 47 ≡ 16(AQ), f(26) = 267 ≡ 5(AF)

f(13) = 137 ≡ 7(AH), f(20) = 207 ≡ 26(AÃ), f(12) ≡ 12(AM), f(1) ≡ 1(AB)

f(4) = 47 ≡ 16(AQ), f(17) ≡ 8(AI)

暗号文=”A,AIACAMAQAFAHAÃAMABAQAI”

復号化　暗号文=”A,AIACAMAQAFAHAÃAMABAQAI”

数値=27,8,2,12,16,5,7,26,12,1,16,8

f−1(27) = 273 ≡ 15(P), f−1(8) = 83 ≡ 17(R), f−1(2) = 23 ≡ 8(I)

f−1(12) = 123 ≡ 12(M), f−1(16) = 163 ≡ 4(E), f−1(5) = 53 ≡ 26(Ã)

f−1(7) = 73 ≡ 13(N), f−1(26) = 263 ≡ 20(U), f−1(12) ≡ 12(M)

f−1(1) ≡ 1(B), f−1(16) ≡ 4(E), f−1(8) ≡ 17(R)

復号文=”PRIMEÃNUMBER”

3.　 p = 23, q = 89 , n = 23 · 89 = 2047 , ϕ(23 · 89) = (23− 1)(89− 1) = 1936

e = 179 , d = 179−1 ≡ 411 mod 1936

N = 40 , 0(A)～25(Z),26(Ã),27(.),28(?),29($),30(0)～39(9)を割り当てる．

k = 2, l = 3

暗号化　平文=”SENDÃ$7500”

数値=18 · 40 + 4 = 724(SE), 13 · 40 + 3 = 523(ND), 26 · 40 + 29 = 1069(Ã$),

37 · 40 + 35 = 1515(75), 30 · 40 + 30 = 1230(00)

f(724) = 724179 ≡ 1906 = 1 · 402 + 7 · 40 + 26(BHÃ)

f(523) ≡ 1072 = 0 · 402 + 26 · 40 + 32(AÃ2)

f(1069) ≡ 802 = 0 · 402 + 20 · 40 + 2(AUC)

f(1515) ≡ 364 = 0 · 402 + 9 · 40 + 4(AJE)

f(1230) ≡ 710 = 0 · 402 + 17 · 40 + 30(AR0)

暗号文=”BHÃAÃ2AUCAJEAR0”
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Remark

暗号化と復号化における dや eは ϕ(p · q) = (p− 1)(q − 1)を法として計算しているが，

ϕ(p · q)の代わりに p− 1と q − 1の最小公倍数 l.c.m.(p− 1, q − 1)を用いてもよい．

例えば，上記の Example 1は ϕ(p · q) = l.c.m.(p− 1, q − 1)である.

Example 2では 20の代わりに 10を法としてもよい．e = 7 , d = 3のときは同じである．

e = 11 , d = 11のときは e = 1 , d = 1とするのと同じ (暗号にならない). e = 13 , d = 17

のときは e = 3 , d = 7とするのと同じ，e = 17 , d = 13のときは e = 7 , d = 3とするの

と同じ，e = 19 , d = 19のときは e = 9 , d = 9とするのと同じである．

Example 3ではϕ(23 · 89) = 1936の代わりに l.c.m.(22, 88) = 88を法としてもよい．そ

うすると，e = 179 , d = 411の代わりに e = 3 , d = 59として計算すればよい．

問題 5-1　 Example 1において，

(a)　”HYOGO” を暗号化せよ．(答　”LUOCO” )

(b)　ローマ字表記した自分の名前を暗号化せよ．

(c)　暗号文 ”EANXI” を復号化せよ．

問題 5-2　 Example 2において，

(a)　”KYOTO FU” を暗号化せよ．(答　”AKASAUANAUAFAOAÃ” )

(b)　ローマ字表記した自分の名前を暗号化せよ．

(c)　暗号文 ”AKAAAHAIAC” を復号化せよ．

問題5-3　「十進BASIC」や「PASCAL」などのプログラミング言語を用いて，Example

1-3の場合に暗号化や復号化するプログラムを作れ．


